Метод наименьших квадратов примеры решения задач. Аппроксимация функции методом наименьших квадратов Материаловедение аппроксимация функций методом наименьших квадратов

КУРСОВАЯ РАБОТА

Аппроксимация функции методом наименьших квадратов


Введение

эмпирический mathcad аппроксимация

Целью курсовой работы является углубление знаний по информатике, развитие и закрепление навыков работы с табличным процессором Microsoft Excel и MathCAD. Применение их для решения задач с помощью ЭВМ из предметной области, связанной с исследованиями.

В каждом задании формулируются условия задачи, исходные данные, форма выдачи результатов, указываются основные математические зависимости для решения задачи Контрольный расчет позволяет убедиться в правильности работы программы.

Понятие аппроксимация представляет собой приближенное выражение каких-либо математических объектов (например, чисел или функций) через другие более простые, более удобные в использовании или просто более известные. В научных исследованиях аппроксимация применяется для описания, анализа, обобщения и дальнейшего использования эмпирических результатов.

Как известно, между величинами может существовать точная (функциональная) связь, когда одному значению аргумента соответствует одно определенное значение, и менее точная (корреляционная) связь, когда одному конкретному значению аргумента соответствует приближенное значение или некоторое множество значений функции, в той или иной степени близких друг к другу. При ведении научных исследований, обработке результатов наблюдения или эксперимента обычно приходиться сталкиваться со вторым вариантом. При изучении количественных зависимостей различных показателей, значения которых определяются эмпирически, как правило, имеется некоторая их вариабельность. Частично она задается неоднородностью самих изучаемых объектов неживой и, особенно, живой природы, частично обуславливается погрешностью наблюдения и количественной обработке материалов. Последнюю составляющую не всегда удается исключить полностью, можно лишь минимизировать ее тщательным выбором адекватного метода исследования и аккуратностью работы.

Специалисты в области автоматизации технологических процессов и производств имеют дело с большим объёмом экспериментальных данных, для обработки которых используется компьютер. Исходные данные и полученные результаты вычислений могут быть представлены в табличной форме, используя табличные процессоры (электронные таблицы) и, в частности, Excel. Курсовая работа по информатике позволяет студенту закрепить и развить навыки работы с помощью базовых компьютерных технологий при решении задач в сфере профессиональной деятельности.- система компьютерной алгебры из класса систем автоматизированного проектирования, ориентированная на подготовку интерактивных документов с вычислениями и визуальным сопровождением, отличается легкостью использования и применения для коллективной работы.


1. Общие сведения


Очень часто, особенно при анализе эмпирических данных возникает необходимость найти в явном виде функциональную зависимость между величинами x и у , которые получены в результате измерений.

При аналитическом исследовании взаимосвязи между двумя величинами x и y производят ряд наблюдений и в результате получается таблица значений:


xx 1 x 1 x i X n уy 1 y 1 y i Y n

Эта таблица обычно получается как итог каких-либо экспериментов, в которых x, (независимая величина) задается экспериментатором, а у, получается в результате опыта. Поэтому эти значения у, будем называть эмпирическими или опытными значениями.

Между величинами x и y существует функциональная зависимость, но ее аналитический вид обычно неизвестен, поэтому возникает практически важная задача - найти эмпирическую формулу


y = f(x; a1, a2,…, am), (1)


(где a 1 , a 2 ,…, a m - параметры), значения которой при x = x, возможно мало отличались бы от опытных значений у, (i = 1,2,…, п) .

Обычно указывают класс функций (например, множество линейных, степенных, показательных и т.п.) из которого выбирается функция f (x) , и далее определяются наилучшие значения параметров.

Если в эмпирическую формулу (1) подставить исходные x, то получим теоретические значения

Y T i = f (x i ; a1, a2……a m ) , где i = 1,2,…, n .


Разности y i T - у i , называются отклонениями и представляют собой расстояния по вертикали от точек M i до графика эмпирической функции.

Согласно методу наименьших квадратов наилучшими коэффициентами a 1 , a 2 ,…, a m считаются те, для которых сумма квадратов отклонений найденной эмпирической функции от заданных значений функции



будет минимальной.

Поясним геометрический смысл метода наименьших квадратов.

Каждая пара чисел (x i , y i ) из исходной таблицы определяет точку M i на плоскости XOY. Используя формулу (1) при различных значениях коэффициентов a 1 , a 2 ,…, a m можно построить ряд кривых, которые являются графиками функции (1). Задача состоит в определении коэффициентов a 1 , a 2 ,…, a m таким образом, чтобы сумма квадратов расстояний по вертикали от точек M i (x i , y i ) до графика функции (1) была наименьшей (рис. 1).



Построение эмпирической формулы состоит из двух этапов: выяснение общего вида этой формулы и определение ее наилучших параметров.

Если неизвестен характер зависимости между данными величинами x и y , то вид эмпирической зависимости является произвольным. Предпочтение отдается простым формулам, обладающим хорошей точностью. Удачный выбор эмпирической формулы в значительной мере зависит от знаний исследователя в предметной области, используя которые он может указать класс функций из теоретических соображений. Большое значение имеет изображение полученных данных в декартовых или в специальных системах координат (полулогарифмической, логарифмической и т.д.). По положению точек можно примерно угадать общий вид зависимости путем установления сходства между построенным графиком и образцами известных кривых.

Определение наилучших коэффициентов a 1 , a 2,…, a m входящих в эмпирическую формулу производят хорошо известным аналитическими методами.

Для того, чтобы найти набор коэффициентовa a 1 , a 2 …..a m , которые доставляют минимум функции S, определяемой формулой (2), используем необходимое условие экстремума функции нескольких переменных - равенство нулю частных производных.

В результате получим нормальную систему для определения коэффициентов a i (i = 1,2,…, m) :



Таким образом, нахождение коэффициентов a i сводится к решению системы (3). Эта система упрощается, если эмпирическая формула (1) линейна относительно параметров a i , тогда система (3) - будет линейной.


1.1 Линейная зависимость


Конкретный вид системы (3) зависит от того, из какого класса эмпирических формул мы ищем зависимость (1). В случае линейной зависимости y = a 1 + a 2 x система (3) примет вид:


Эта линейная система может быть решена любым известным методом (методом Гаусса, простых итераций, формулами Крамера).


1.2 Квадратичная зависимость


В случае квадратичной зависимости y = a 1 + a 2 x + a 3x2 система (3) примет вид:



1.3 Экспоненциальная зависимость


В ряде случаев в качестве эмпирической формулы берут функцию в которую неопределенные коэффициенты входят нелинейно. При этом иногда задачу удается линеаризовать т.е. свести к линейной. К числу таких зависимостей относится экспоненциальная зависимость


y = a 1 * e a2x (6)


где a1 иa2, неопределенные коффициенты.

Линеаризация достигается путем логарифмирования равенства (6), после чего получаем соотношение

ln y = ln a1 + a2x(7)


Обозначим ln у и ln a x соответственно через t и c , тогда зависимость (6) может быть записана в виде t = a 1 + a 2 х , что позволяет применить формулы (4) с заменой a 1 на c и у i на t i


1.4 Элементы теории корреляции


График восстановленной функциональной зависимости у(х) по результатам измерений (хi , у i ), i = 1,2, K , n называется кривой регрессии. Для проверки согласия построенной кривой регрессии с результатами эксперимента обычно вводят следующие числовые характеристики: коэффициент корреляции (линейная зависимость), корреляционное отношение и коэффициент детерминированности. При этом результаты обычно группируют и представляют в форме корреляционной таблицы. В каждой клетке этой таблицы приводятся численности n iJ - тех пар (х, у) , компоненты которых попадают в соответствующие интервалы группировки по каждой переменной. Предполагая длины интервалов группировки (по каждой переменной) равными между собой, выбирают центры хi (соответственно у i ) этих интервалов и числа n iJ - в качестве основы для расчетов.

Коэффициент корреляции является мерой линейной связи между зависимыми случайными величинами: он показывает, насколько хорошо в среднем может быть представлена одна из величин в виде линейной функции от другой.

Коэффициент корреляции вычисляется по формуле:


где, и - среднее арифметическое значение соответственно х и у .

Коэффициент корреляции между случайными величинами по абсолютной величине не превосходит 1. Чем ближе |р| к 1, тем теснее линейная связь между х и у.

В случае нелинейной корреляционной связи условные средние значения располагаются около кривой линии. В этом случае в качестве характеристики силы связи рекомендуется использовать корреляционное отношение, интерпретация которого не зависит от вида исследуемой зависимости.

Корреляционное отношение вычисляется по формуле:



где n i = , n f = , а числитель характеризует рассеяние условных средних у, около безусловного среднего y .

Всегда. Равенство = 0 соответствует некоррелированным случайным величинам; = 1 тогда и только тогда, когда имеется точная функциональная связь междуy и x. В случае линейной зависимости y от x корреляционное отношение совпадает с квадратом коэффициента корреляции. Величина - ? 2 используется в качестве индикатора отклонения регрессии от линейной.

Корреляционное отношение является мерой корреляционной связи y с x в какой угодно форме, но не может дать представления о степени приближенности эмпирических данных к специальной форме. Чтобы выяснить насколько точно построенная кривая отражает эмпирические данные вводится еще одна характеристика - коэффициент детерминированности.

Для его описания рассмотрим следующие величины. - полная сумма квадратов, где среднее значение.

Можно доказать следующее равенство

Первое слагаемое равно Sост = и называется остаточной суммой квадратов. Оно характеризует отклонение экспериментальных от теоритических.

Второе слагаемое равно Sрегр = 2 и называется регрессионной суммой квадратов и оно характеризует разброс данных.

Очевидно, что справедливо следующее равенство Sполн = Sост + Sрегр.

Коэффициент детерминированности определяется по формуле:



Чем меньше остаточная сумма квадратов по сравнению с общей суммой квадратов, тем больше значение коэффициента детерминированности r 2 , который показывает, насколько хорошо уравнение, полученное с помощью регрессионного анализа, объясняет взаимосвязи между переменными. Если он равен 1, то имеет место полная корреляция с моделью, т.е. нет различия между фактическим и оценочным значениями y. В противоположном случае, если коэффициент детерминированности равен 0, то уравнение регрессии неудачно для предсказания значений y

Коэффициент детерминированности всегда не превосходит корреляционное отношение. В случае когда выполняется равенство r 2 = то можно считать, что построенная эмпирическая формула наиболее точно отражает эмпирические данные.


2. Постановка задачи


1. Используя метод наименьших квадратов функцию, заданную таблично, аппроксимировать

а) многочленом первой степени;

б) многочленом второй степени;

в) экспоненциальной зависимостью.

Для каждой зависимости вычислить коэффициент детерминированности.

Вычислить коэффициент корреляции (только в случае а).

Для каждой зависимости построить линию тренда.

Используя функцию ЛИНЕЙН вычислить числовые характеристики зависимости от.

Сравнить свои вычисления с результатами, полученными при помощи функции ЛИНЕЙН.

Сделать вывод, какая из полученных формул наилучшим образом аппроксимирует функцию.

Написать программу на одном из языков программирования и сравнить результаты счета с полученными выше.


3. Исходные данные


Функция задана рисунком 1.



4. Расчет аппроксимаций в табличном процессоре Excel


Для проведения расчетов целесообразно воспользоваться табличным процессором Microsoft Excel. И данные расположить как показано на рисунке 2.



Для этого заносим:

·в ячейки A6:A30 заносим значения xi.

·в ячейки B6:B30 заносим значения уi.

·в ячейку C6 вводим формулу =А6^2.

·в ячейки C7:C30 эта формула копируется.

·в ячейку D6 вводим формулу =А6*В6.

·в ячейки D7:D30 эта формула копируется.

·в ячейку F6 вводим формулу =А6^4.

·в ячейки F7:F30 эта формула копируется.

·в ячейку G6 вводим формулу =А6^2*В6.

·в ячейки G7:G30 эта формула копируется.

·в ячейку H6 вводим формулу =LN(B6).

·в ячейки H7:H30 эта формула копируется.

·в ячейку I6 вводим формулу =A6*LN(B6).

·в ячейки I7:I30 эта формула копируется. Последующие шаги делаем с помощью автосуммирования

·в ячейку А33 вводим формулу =СУММ (А6:А30).

·в ячейку B33 вводим формулу =СУММ (В6:В30).

·в ячейку C33 вводим формулу =СУММ (С6:С30).

·в ячейку D33 вводим формулу =СУММ (D6:D30).

·в ячейку E33 вводим формулу =СУММ (E6:E30).

·в ячейку F33 вводим формулу =СУММ (F6:F30).

·в ячейку G33 вводим формулу =СУММ (G6:G30).

·в ячейку H33 вводим формулу =СУММ (H6:H30).

·в ячейку I33 вводим формулу =СУММ (I6:I30).

Аппроксимируем функцию y = f (x) линейной функцией y = a 1 + a 2x. Для определения коэффициентов a1 и a2 воспользуемся системой (4). Используя итоговые суммы таблицы 2, расположенные в ячейках A33, B33, C33 и D33, запишем систему (4) в виде



решив которую, получим a1 = -24,7164 и a2 = 11,63183

Таким образом, линейная аппроксимация имеет вид y= -24,7164 + 11,63183х (12)

Решение системы (11) проводили, пользуясь средствами Microsoft Excel. Результаты представлены на рисунке 3:



В таблице в ячейках A38:B39 записана формула {=МОБР (A35:B36)}. В ячейках E38:E39 записана формула {=МУМНОЖ (A38:B39, C35:C36)}.


Далее аппроксимируем функцию y = f (x) квадратичной функцией y = a 1 + a 2 x + a 3 x 2. Для определения коэффициентов a1, a2 и a3 воспользуемся системой (5). Используя итоговые суммы таблицы 2, расположенные в ячейках A33, B33, C33, D33, E33, F33 и G33 запишем систему (5) в виде:



Решив которую, получим a1 = 1,580946, a2 = -0,60819 и a3 = 0,954171 (14)

Таким образом, квадратичная аппроксимация имеет вид:

у = 1,580946 -0,60819х +0,954171 х 2

Решение системы (13) проводили, пользуясь средствами Microsoft Excel. Результаты представлены на рисунке 4.



В таблице в ячейках A46:C48 записана формула {=МОБР (A41:C43)}. В ячейках F46:F48 записана формула {=МУМНОЖ (A41:C43, D46:D48)}.

Теперь аппроксимируем функцию y = f (х) экспоненциальной функцией y = a 1 e a2x . Для определения коэффициентов a 1 и a 2 прологарифмируем значения y i и используя итоговые суммы таблицы 2, расположенные в ячейках A26, C26, H26 и I26 получим систему:



где с = ln(a 1 ).

Решив систему (10) найдем с = 0,506435, a2 = 0.409819.

После потенцирования получим a1 = 1,659365.

Таким образом, экспоненциальная аппроксимация имеет вид y = 1,659365*e 0,4098194x

Решение системы (15) проводили, пользуясь средствами Microsoft Excel. Результаты представлены на рисунке 5.


В таблице в ячейках A55:B56 записана формула {=МОБР (A51:B52)}. В ячейках E54:E56 записана формула {=МУМНОЖ (A51:B52, С51:С52)}. В ячейке E56 записана формула =EXP(E54).

Вычислим среднее арифметическое x и у по формулам:



Результаты расчета x и y средствами Microsoft Excel представлены на рисунке 6.



В ячейке B58 записана формула =A33/25. В ячейке B59 записана формула =B33/25.

Таблица 2


Поясним как таблица на рисунке 7 составляется.

Ячейки A6:A33 и B6:B33 уже заполнены (см. рис. 2).

·в ячейку J6 вводим формулу =(A6-$B$58)*(B6-$B$59).

·в ячейки J7:J30 эта формула копируется.

·в ячейку K6 вводим формулу =(А6-$В$58)^2.

·в ячейки K7:K30 эта формула копируется.

·в ячейку L6 вводим формулу =(В1-$В$59)^2.

·в ячейки L7:L30 эта формула копируется.

·в ячейку M6 вводим формулу =($Е$38+$Е$39*А6-В6)^2.

·в ячейки M7:M30 эта формула копируется.

·в ячейку N6 вводим формулу =($F$46 +$F$47*A6 +$F$48*A6 Л6-В6)^2.

·в ячейки N7:N30 эта формула копируется.

·в ячейку O6 вводим формулу =($Е$56*ЕХР ($Е$55*А6) - В6)^2.

·в ячейки O7:O30 эта формула копируется.

Последующие шаги делаем с помощью автосуммирования.

·в ячейку J33 вводим формулу =CYMM (J6:J30).

·в ячейку K33 вводим формулу =СУММ (К6:К30).

·в ячейку L33 вводим формулу =CYMM (L6:L30).

·в ячейку M33 вводим формулу =СУММ (М6:М30).

·в ячейку N33 вводим формулу =СУММ (N6:N30).

·в ячейку O33 вводим формулу =СУММ (06:030).

Теперь проведем расчеты коэффициента корреляции по формуле (8) (только для линейной аппроксимации) и коэффициента детерминированности по формуле (10). Результаты расчетов средствами Microsoft Ехcеl представлены на рисунке 7.



В таблице 8 в ячейке B61 записана формула =J33/(K33*L33^(1/2). В ячейке B62 записана формула =1 - M33/L33. В ячейке B63 записана формула =1 - N33/L33. В ячейке B64 записана формула =1 - O33/L33.

Анализ результатов расчетов показывает, что квадратичная аппроксимация наилучшим образом описывает экспериментальные данные.


4.1 Построение графиков в Excel


Выделим ячейки A1:A25, после этого обратимся к мастеру диаграмм. Выберем точечный график. После того как диаграмма будет построена, щелкнем правой кнопкой мышки на линии графика и выберем добавить линию тренда (соответственно линейную, экспоненциальную, степенную и полиномиальную второй степени).

График линейной аппроксимации


График квадратичной аппроксимации


График экспоненциальной аппроксимации.


5. Аппроксимация функции с помощью MathCAD


Аппроксимация данных с учетом их статистических параметров относится к задачам регрессии. Они обычно возникают при обработке экспериментальных данных, полученных в результате измерений процессов или физических явлений, статистических по своей природе (как, например, измерения в радиометрии и ядерной геофизике), или на высоком уровне помех (шумов). Задачей регрессионного анализа является подбор математических формул, наилучшим образом описывающих экспериментальные данные.


.1 Линейная регрессия


Линейная регрессия в системе Mathcad выполняется по векторам аргумента Х и отсчетов Y функциями:

intercept (x, y) - вычисляет параметр а 1 , смещение линии регрессии по вертикали (см. рис.)

slope (x, y) - вычисляет параметр a 2 , угловой коэффициент линии регрессии (см. рис.)

y(x) = a1+a2*x


Функция corr (у, y(x)) вычисляет коэффициент корреляции Пирсона. Чем он ближе к 1, тем точнее обрабатываемые данные соответствуют линейной зависимости (см. рис.)

.2 Полиноминальная регрессия


Одномерная полиномиальная регрессия с произвольной степенью n полинома и с произвольными координатами отсчетов в Mathcad выполняется функциями:

regress (х, у, n) - вычисляет вектор S, в составе которого находятся коэффициенты ai полинома n -й степени;

Значения коэффициентов ai могут быть извлечены из вектора S функцией submatrix (S, 3, length(S) - 1, 0, 0).

Полученные значения коэффициентов используем в уравнении регрессии


y(x) = a1+a2*x+a3*x 2 (см. рис.)

.3 Нелинейная регрессия


Для простых типовых формул аппроксимации предусмотрен ряд функций нелинейной регрессии, в которых параметры функций подбираются программой Mathcad.

К их числу относится функция expfit (x, y, s), которая возвращает вектор, содержащий коэффициенты a1, a2 и a3 экспоненциальной функции

y(x) = a1 ^exp (a2 x) + a3. В вектор S вводятся начальные значения коэффициентов a1, a2 и a3 первого приближения.


Заключение


Анализ результатов расчетов показывает, что линейная аппроксимация наилучшим образом описывает экспериментальные данные.

Результаты полученные с помощью программы MathCAD полностью совпадают со значениями полученными с помощью Excel. Это говорит о верности вычислений.


Список используемой литературы

  1. Информатика: Учебник / Под ред. проф. Н.В. Макаровой. М.: Финансы и статистика 2007
  2. Информатика: Практикум по технологии работы на компьютере / Под. Ред. проф. Н.В. Макаровой. М Финансы и статистика, 2011.
  3. Н.С. Пискунов. Дифференциальное и интегральное исчисление, 2010.
  4. Информатика, Аппроксимация методом наименьших квадратов, методические указания, Санкт-Петербург, 2009.
Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

КУРСОВАЯ РАБОТА

по дисциплине: Информатика

Тема: Аппроксимация функции методом наименьших квадратов

Введение

1. Постановка задачи

2. Расчётные формулы

Расчёт с помощью таблиц, выполненных средствами Microsoft Excel

Схема алгоритма

Расчет в программе MathCad

Результаты, полученные с помощью функции Линейн

Представление результатов в виде графиков

Введение

Целью курсовой работы является углубление знаний по информатике, развитие и закрепление навыков работы с табличным процессором Microsoft Excel и программным продуктом MathCAD и применение их для решения задач с помощью ЭВМ из предметной области, связанной с исследованиями.

Аппроксимация (от латинского "approximare" -"приближаться") - приближенное выражение каких-либо математических объектов (например, чисел или функций) через другие более простые, более удобные в пользовании или просто более известные. В научных исследованиях аппроксимация применяется для описания, анализа, обобщения и дальнейшего использования эмпирических результатов.

Как известно, между величинами может существовать точная (функциональная) связь, когда одному значению аргумента соответствует одно определенное значение, и менее точная (корреляционная) связь, когда одному конкретному значению аргумента соответствует приближенное значение или некоторое множество значений функции, в той или иной степени близких друг к другу. При ведении научных исследований, обработке результатов наблюдения или эксперимента обычно приходиться сталкиваться со вторым вариантом.

При изучении количественных зависимостей различных показателей, значения которых определяются эмпирически, как правило, имеется некоторая их вариабельность. Частично она задается неоднородностью самих изучаемых объектов неживой и, особенно, живой природы, частично - обуславливается погрешностью наблюдения и количественной обработке материалов. Последнюю составляющую не всегда удается исключить полностью, можно лишь минимизировать ее тщательным выбором адекватного метода исследования и аккуратностью работы. Поэтому при выполнении любой научно-исследовательской работы возникает проблема выявления подлинного характера зависимости изучаемых показателей, этой или иной степени замаскированных неучтенностью вариабельности: значений. Для этого и применяется аппроксимация - приближенное описание корреляционной зависимости переменных подходящим уравнением функциональной зависимости, передающим основную тенденцию зависимости (или ее "тренд").

При выборе аппроксимации следует исходить из конкретной задачи исследования. Обычно, чем более простое уравнение используется для аппроксимации, тем более приблизительно получаемое описание зависимости. Поэтому важно считывать, насколько существенны и чем обусловлены отклонения конкретных значений от получаемого тренда. При описании зависимости эмпирически определенных значений можно добиться и гораздо большей точности, используя какое-либо более сложное, много параметрическое уравнение. Однако нет никакого смысла стремиться с максимальной точностью передать случайные отклонения величин в конкретных рядах эмпирических данных. Гораздо важнее уловить общую закономерность, которая в данном случае наиболее логично и с приемлемой точностью выражается именно двухпараметрическим уравнением степенной функции. Таким образом, выбирая метод аппроксимации, исследователь всегда идет на компромисс: решает, в какой степени в данном случае целесообразно и уместно «пожертвовать» деталями и, соответственно, насколько обобщенно следует выразить зависимость сопоставляемых переменных. Наряду с выявлением закономерностей, замаскированных случайными отклонениями эмпирических данных от общей закономерности, аппроксимация позволяет также решать много других важных задач: формализовать найденную зависимость; найти неизвестные значения зависимой переменной путем интерполяции или, если это допустимо, экстраполяции.

В каждом задании формулируются условия задачи, исходные данные, форма выдачи результатов, указываются основные математические зависимости для решения задачи. В соответствии с методом решения задачи разрабатывается алгоритм решения, который представляется в графической форме.

1. Постановка задачи

1. Используя метод наименьших квадратов функцию , заданную таблично, аппроксимировать:

а) многочленом первой степени ;

б) многочленом второй степени ;

в) экспоненциальной зависимостью .

Для каждой зависимости вычислить коэффициент детерминированности.

Вычислить коэффициент корреляции (только в случае а).

Для каждой зависимости построить линию тренда.

Используя функцию ЛИНЕЙН вычислить числовые характеристики зависимости от .

Сравнить свои вычисления с результатами, полученными при помощи функции ЛИНЕЙН.

Сделать вывод, какая из полученных формул наилучшим образом аппроксимирует функцию .

Написать программу на одном из языков программирования и сравнить результаты счета с полученными выше.

Вариант 3. Функция задана табл. 1.

Таблица 1.


2. Расчётные формулы

Часто при анализе эмпирических данных возникает необходимость найти функциональную зависимость между величинами x и y, которые получены в результате опыта или измерений.

Хi (независимая величина) задается экспериментатором, а yi , называемая эмпирическими или опытными значениями получается в результате опыта.

Аналитический вид функциональной зависимости, существующей между величинами x и y обычно неизвестен, поэтому возникает практически важная задача - найти эмпирическую формулу

, (1)

(где - параметры), значения которой при возможно мало отличались бы от опытных значений.

Согласно методу наименьших квадратов наилучшими коэффициентами считаются те, для которых сумма квадратов отклонений найденной эмпирической функции от заданных значений функции будет минимальной.

Используя необходимое условие экстремума функции нескольких переменных - равенство нулю частных производных, находят набор коэффициентов , которые доставляют минимум функции, определяемой формулой (2) и получают нормальную систему для определения коэффициентов :

(3)

Таким образом, нахождение коэффициентов сводится к решению системы (3).

Вид системы (3) зависит от того, из какого класса эмпирических формул мы ищем зависимость (1). В случае линейной зависимости система (3) примет вид:

(4)

В случае квадратичной зависимости система (3) примет вид:

(5)

В ряде случаев в качестве эмпирической формулы берут функцию в которую неопределенные коэффициенты входят нелинейно. При этом иногда задачу удается линеаризовать т.е. свести к линейной. К числу таких зависимостей относится экспоненциальная зависимость

где a1и a2 неопределенные коэффициенты.

Линеаризация достигается путем логарифмирования равенства (6), после чего получаем соотношение

(7)

Обозначим и соответственно через и , тогда зависимость (6) может быть записана в виде , что позволяет применить формулы (4) с заменой a1 на и на .

График восстановленной функциональной зависимости y(x) по результатам измерений (xi, yi), i=1,2,…,n называется кривой регрессии. Для проверки согласия построенной кривой регрессии с результатами эксперимента обычно вводят следующие числовые характеристики: коэффициент корреляции (линейная зависимость), корреляционное отношение и коэффициент детерминированности.

Коэффициент корреляции является мерой линейной связи между зависимыми случайными величинами: он показывает, насколько хорошо в среднем может быть представлена одна из величин в виде линейной функции от другой.

Коэффициент корреляции вычисляется по формуле:

(8)

(9)

где - среднее арифметическое значение соответственно по x, y.

Коэффициент корреляции между случайными величинами по абсолютной величине не превосходит 1. Чем ближе к 1, тем теснее линейная связь между x и y.

В случае нелинейной корреляционной связи условные средние значения располагаются около кривой линии. В этом случае в качестве характеристики силы связи рекомендуется использовать корреляционное отношение, интерпретация которого не зависит от вида исследуемой зависимости.

Корреляционное отношение вычисляется по формуле:

(10)

где а числитель характеризует рассеяние условных средних около безусловного среднего.

Всегда. Равенство = соответствует случайным некоррелированным величинам; = тогда и только тогда, когда имеется точная функциональная связь между x и y. В случае линейной зависимости y от x корреляционное отношение совпадает с квадратом коэффициента корреляции. Величина используется в качестве индикатора отклонения регрессии от линейной.

Корреляционное отношение является мерой корреляционной связи y c x в какой угодно форме, но не может дать представления о степени приближенности эмпирических данных к специальной форме. Чтобы выяснить насколько точно построен5ная кривая отражает эмпирические данные вводится еще одна характеристика - коэффициент детерминированности.

Коэффициент детерминированности определяется по формуле:

где Sост = - остаточная сумма квадратов, характеризующая отклонение экспериментальных данных от теоретических.полн - полная сумма квадратов, где среднее значение yi.

- регрессионная сумма квадратов, характеризующая разброс данных.

Чем меньше остаточная сумма квадратов по сравнению с общей суммой квадратов, тем больше значение коэффициента детерминированности r2, который показывает, насколько хорошо уравнение, полученное с помощью регрессионного анализа, объясняет взаимосвязи между переменными. Если он равен 1, то имеет место полная корреляция с моделью, т.е. нет различия между фактическим и оценочным значениями y. В противоположном случае, если коэффициент детерминированности равен 0, то уравнение регрессии неудачно для предсказания значений y.

Коэффициент детерминированности всегда не превосходит корреляционное отношение. В случае когда выполняется равенство то можно считать, что построенная эмпирическая формула наиболее точно отражает эмпирические данные.

3. Расчёт с помощью таблиц, выполненных средствами Microsoft Excel

Для проведения расчётов данные целесообразно расположить в виде таблицы 2, используя средства табличного процессора Microsoft Excel.

Таблица 2












Поясним, как таблица 2 составляется.

Шаг 1.В ячейки А1:A25 заносим значения xi.

Шаг 2.В ячейки B1:B25 заносим значения уi.

Шаг 3.В ячейку С1 вводим формулу=А1^2.

Шаг 4.В ячейки С1:С25 эта формула копируется.

Шаг 5.В ячейку D1 вводим формулу=А1*B1.

Шаг 6.В ячейки D1:D25 эта формула копируется.

Шаг 7.В ячейку F1 вводим формулу=А1^4.

Шаг 8.В ячейки F1:F25 эта формула копируется.

Шаг 9.В ячейку G1 вводим формулу=А1^2*B1.

Шаг 10.В ячейки G1:G25 эта формула копируется.

Шаг 11.В ячейку H1 вводим формулу = LN(B1).

Шаг 12.В ячейки H1:H25 эта формула копируется.

Шаг 13.В ячейку I1 вводим формулу=А1*LN(B1).

Шаг 14.В ячейки I1:I25 эта формула копируется.

Последующие шаги делаем с помощью автосуммирования S.

Шаг 15. В ячейку А26 вводим формулу = СУММ(А1:А25).

Шаг 16. В ячейку В26 вводим формулу = СУММ(В1:В25).

Шаг 17. В ячейку С26 вводим формулу = СУММ(С1:С25).

Шаг 18. В ячейку D26 вводим формулу = СУММ(D1:D25).

Шаг 19. В ячейку E26 вводим формулу = СУММ(E1:E25).

Шаг 20. В ячейку F26 вводим формулу = СУММ(F1:F25).

Шаг 21. В ячейку G26 вводим формулу = СУММ(G1:G25).

Шаг 22. В ячейку H26 вводим формулу = СУММ(H1:H25).

Шаг 23. В ячейку I26 вводим формулу = СУММ(I1:I25).

Аппроксимируем функцию линейной функцией . Для определения коэффициентов и воспользуемся системой (4). Используя итоговые суммы таблицы 2, расположенные в ячейках A26, B26, C26 и D26, запишем систему (4) в виде

(11)

решив которую, получим и .

Систему решали методом Крамера. Суть которого состоит в следующем. Рассмотрим систему n алгебраических линейных уравнений с n неизвестными:

(12)

Определителем системы называется определитель матрицы системы:

(13)

Обозначим - определитель, который получится из определителя системы Δ заменой j-го столбца на столбец

Таким образом, линейная аппроксимация имеет вид

Решение системы (11) проводим, пользуясь средствами Microsoft Excel. Результаты представлены в таблице 3.

Таблица 3











Обратная матрица






В таблице 3 в ячейках A32:B33 записана формула {=МОБР(А28:В29)}.

В ячейках Е32:Е33 записана формула {=МУМНОЖ(А32:В33),(C28:С29)}.

Далее аппроксимируем функцию квадратичной функцией . Для определения коэффициентов a1, a2 и a3 воспользуемся системой (5). Используя итоговые суммы таблицы 2, расположенные в ячейках A26, B26, C26 , D26, E26, F26, G26 запишем систему (5) в виде

(16)

решив которую, получим a1=10,663624, и

Таким образом, квадратичная аппроксимация имеет вид

Решение системы (16) проводим, пользуясь средствами Microsoft Excel. Результаты представлены в таблице 4.

Таблица 4














Обратная матрица







В таблице 4 в ячейках А41:С43 записана формула {=МОБР(А36:С38)}.

В ячейках F41:F43 записана формула {=МУМНОЖ(А41:C43),(D36:D38)}.

Теперь аппроксимируем функцию экспоненциальной функцией . Для определения коэффициентов и прологарифмируем значения и, используя итоговые суммы таблицы 2, расположенные в ячейках A26, C26, H26 и I26, получим систему

(18)

Решив систему (18), получим и .

После потенцирования получим .

Таким образом, экспоненциальная аппроксимация имеет вид

Решение системы (18) проводим, пользуясь средствами Microsoft Excel. Результаты представлены в таблице 5.

Таблица 5











Обратная матрица




В ячейках А50:В51 записана формула {=МОБР(А46:В47)}.

В ячейках Е49:Е50 записана формула {=МУМНОЖ(А50:В51),(С46:С47)}.

В ячейке Е51 записана формула=EXP(E49).

Вычислим среднее арифметическое и по формулам:

Результаты расчета и средствами Microsoft Excel представлены в таблице 6.

Таблица 6



В ячейке В54 записана формула=А26/25.

В ячейке В55 записана формула=В26/25

Таблица 7


Шаг 1.В ячейку J1 вводим формулу = (А1-$B$54)*(B1-$B$55).

Шаг 2.В ячейки J2:J25 эта формула копируется.

Шаг 3.В ячейку K1 вводим формулу = (А1-$B$54)^2.

Шаг 4.В ячейки k2:K25 эта формула копируется.

Шаг 5.В ячейку L1 вводим формулу = (B1-$B$55)^2.

Шаг 6.В ячейки L2:L25 эта формула копируется.

Шаг 7.В ячейку M1 вводим формулу = ($E$32+$E$33*A1-B1)^2.

Шаг 8.В ячейки M2:M25 эта формула копируется.

Шаг 9.В ячейку N1 вводим формулу = ($F$41+$F$42*A1+$F$43*A1^2-B1)^2.

Шаг 10.В ячейки N2:N25 эта формула копируется.

Шаг 11.В ячейку O1 вводим формулу = ($E$51*EXP($E$50*A1)-B1)^2.

Шаг 12.В ячейки O2:O25 эта формула копируется.

Последующие шаги делаем с помощью авто суммирования S.

Шаг 13.В ячейку J26 вводим формулу = CУММ(J1:J25).

Шаг 14.В ячейку K26 вводим формулу = CУММ(K1:K25).

Шаг 15.В ячейку L26 вводим формулу = CУММ(L1:L25).

Шаг 16.В ячейку M26 вводим формулу = CУММ(M1:M25).

Шаг 17.В ячейку N26 вводим формулу = CУММ(N1:N25).

Шаг 18.В ячейку O26 вводим формулу = CУММ(O1:O25).

Теперь проведем расчеты коэффициента корреляции по формуле (8) (только для линейной аппроксимации) и коэффициента детерминированности по формуле (10). Результаты расчетов средствами Microsoft Excel представлены в таблице 8.

Таблица 8


Коэффициент корреляции

Коэффициент детерминированности (линейная аппроксимация)



Коэффициент детерминированности (квадратичная аппроксимация)



Коэффициент детерминированности (экспоненциальная аппроксимация)



В ячейке E57 записана формула=J26/(K26*L26)^(1/2).

В ячейке E59 записана формула=1-M26/L26.

В ячейке E61 записана формула=1-N26/L26.

В ячейке E63 записана формула=1-O26/L26.

Анализ результатов расчетов показывает, что квадратичная аппроксимация наилучшим образом описывает экспериментальные данные.

Схема алгоритма

Рис. 1. Схема алгоритма для программы расчёта.

5. Расчет в программе MathCad

Линейная регрессия

· line (x, y) - вектор из двух элементов (b, a) коэффициентов линейной регрессии b+ax;

· x - вектор действительных данных аргумента;

· y - вектор действительных данных значений того же размера.

Рисунок 2.

Полиномиальная регрессия означает приближение данных (х1, у1) полиномом k-й степени При k=i полином является прямой линией, при k=2 - параболой, при k=3 - кубической параболой и т.д. Как правило, на практике применяются k<5.

· regress (x,y,k) - вектор коэффициентов для построения полиномиальной регрессии данных;

· interp (s,x,y,t) - результат полиномиальной регрессии;

· s=regress(x,y,k);

· x - вектор действительных данных аргумента, элементы которого расположены в порядке возрастания;

· y - вектор действительных данных значений того же размера;

· k - степень полинома регрессии (целое положительное число);

· t - значение аргумента полинома регрессии.

Рисунок 3

Кроме рассмотренных, в Mathcad встроено еще несколько видов трехпараметрической регрессии, их реализация несколько отличается от приведенных выше вариантов регрессии тем, что для них, помимо массива данных, требуется задать некоторые начальные значения коэффициентов a, b, c. Используйте соответствующий вид регрессии, если хорошо представляете себе, какой зависимостью описывается ваш массив данных. Когда тип регрессии плохо отражает последовательность данных, то ее результат часто бывает неудовлетворительным и даже сильно различающимся в зависимости от выбора начальных значений. Каждая из функций выдает вектор уточненных параметров a, b, c.

Результаты, полученные с помощью функции ЛИНЕЙН

Рассмотрим назначение функции ЛИНЕЙН.

Эта функция использует метод наименьших квадратов, чтобы вычислить прямую линию, которая наилучшим образом аппроксимирует имеющиеся данные.

Функция возвращает массив, который описывает полученную прямую. Уравнение для прямой линии имеет следующий вид:

M1x1 + m2x2 + ... + b или y = mx + b,

алгоритм табличный microsoft программный

где зависимое значение y является функцией независимого значения x. Значения m - это коэффициенты, соответствующие каждой независимой переменной x, а b - это постоянная. Заметим, что y, x и m могут быть векторами.

Для получения результатов необходимо создать табличную формулу, которая будет занимать 5 строк и 2 столбца. Этот интервал может располагаться в произвольном месте на рабочем листе. В этот интервал требуется ввести функцию ЛИНЕЙН.

В результате должны заполниться все ячейки интервала А65:В69 (как показано в таблице 9).

Таблица 9.



Поясним назначение некоторых величин, расположенных в таблице 9.

Величины, расположенные в ячейках А65 и В65 характеризуют соответственно наклон и сдвиг.- коэффициент детерминированности.- F-наблюдаемое значение.- число степеней свободы.- регрессионная сумма квадратов.- остаточная сумма квадратов.

Представление результатов в виде графиков

Рис. 4. График линейной аппроксимации

Рис. 5. График квадратичной аппроксимации

Рис. 6. График экспоненциальной аппроксимации

Выводы

Сделаем выводы по результатам полученных данных.

Анализ результатов расчетов показывает, что квадратичная аппроксимация наилучшим образом описывает экспериментальные данные, т.к. линия тренда для неё наиболее точно отражает поведение функции на данном участке.

Сравнивая результаты, полученные при помощи функции ЛИНЕЙН, видим, что они полностью совпадают с вычислениями, проведенными выше. Это указывает на то, что вычисления верны.

Результаты, полученные с помощью программы MathCad, полностью совпадают со значениями приведенными выше. Это говорит о верности вычислений.

Список используемой литературы

1 Б.П. Демидович, И.А. Марон. Основы вычислительной математики. М: Государственное издательство физико-математической литературы.

2 Информатика: Учебник под ред. проф. Н.В. Макаровой. М: Финансы и статистика, 2007.

3 Информатика: Практикум по технологии работы на компьютере под ред. проф. Н.В. Макаровой. М: Финансы и статистика, 2010.

4 В.Б. Комягин. Программирование в Excel на языке Visual Basic. М: Радио и связь, 2007.

5 Н. Николь, Р. Альбрехт. Excel. Электронные таблицы. М: Изд. «ЭКОМ», 2008.

6 Методические указания к выполнению курсовой работы по информатике (для студентов заочного отделения всех специальностей), под ред. Журова Г. Н., СПбГГИ(ТУ), 2011.

Находит широкое применение в эконометрике в виде четкой экономической интерпретации ее параметров.

Линейная регрессия сводится к нахождению уравнения вида

или

Уравнение вида позволяет по заданным значениям параметра х иметь теоретические значения результативного признака, подставляя в него фактические значения фактора х .

Построение линейной регрессии сводится к оценке ее параметров — а и в. Оценки параметров линейной регрессии могут быть найдены разными методами.

Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

МНК позволяет получить такие оценки параметров а и в, при которых сумма квадратов отклонений фактических значений ре-зультативного признака (у) от расчетных (теоретических) ми-нимальна:

Чтобы найти минимум функции, надо вычислить част-ные производные по каждому из параметров а и b и приравнять их к нулю.

Обозначим через S, тогда:

Преобразуя формулу, получим следующую систему нормальных уравнений для оценки параметров а и в :

Решая систему нормальных уравнений (3.5) либо методом последовательного исключения переменных, либо методом определителей, найдем искомые оценки параметров а и в.

Параметр в называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу.

Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции . Существуют разные модификации формулы линейного коэффициента корреляции. Некоторые из них приведены ниже:

Как известно, линейный коэффициент корреляции находится в границах: -1 1.

Для оценки качества подбора линейной функции рассчитывается квадрат

Линейного коэффициента корреляции называемый коэффициентом детерминации . Коэффициент детерминации характеризует долю дисперсии результативного признака у, объясняемую регрессией, в общей дисперсии результативного признака:

Соответственно величина 1 - характеризует долю диспер-сии у, вызванную влиянием остальных не учтенных в модели факторов.

Вопросы для самоконтроля

1. Суть метода наименьших квадратов?

2. Сколькими переменными предоставляется парная регрессия?

3. Каким коэффициентом определяется теснота связи между переменами?

4. В каких пределах определяется коэффициент детерминации?

5. Оценка параметра b в корреляционно-регрессионном анализе?

1. Кристофер Доугерти. Введение в эконометрию. - М.: ИНФРА - М, 2001 - 402 с.

2. С.А. Бородич. Эконометрика. Минск ООО «Новое знание» 2001.


3. Р.У. Рахметова Краткий курс по эконометрике. Учебное пособие. Алматы. 2004. -78с.

4. И.И. Елисеева.Эконометрика. - М.: «Финансы и статистика»,2002

5. Ежемесячный информационно-аналитический журнал.

Нелинейные экономические модели. Нелинейные модели регрессии. Преобразование переменных.

Нелинейные экономические модели..

Преобразование переменных.

Коэффициент эластичности.

Если между экономическими явлениями существуют нели-нейные соотношения, то они выражаются с помощью соответ-ствующих нелинейных функций: например, равносторонней ги-перболы , параболы второй степени и д.р.

Различают два класса нелинейных регрессий:

1. Регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, например:

Полиномы различных степеней - , ;

Равносторонняя гипербола - ;

Полулогарифмическая функция - .

2. Регрессии, нелинейные по оцениваемым параметрам, например:

Степенная - ;

Показательная - ;

Экспоненциальная - .

Общая сумма квадратов отклонений индивидуальных значений результативного признака у от среднего значения вызвана влиянием множества причин. Условно разделим всю совокупность причин на две группы: изучаемый фактор х и прочие факторы.

Если фактор не оказывает влияния на результат, то линия регрес-сии на графике параллельна оси ох и

Тогда вся дисперсия результативного признака обусловлена воздействием прочих факторов и общая сумма квадратов отклонений совпадет с остаточной. Если же прочие факторы не влияют на результат, то у связан с х функционально и остаточная сумма квадратов равна нулю. В этом случае сумма квадратов отклонений, объясненная регрессией, совпадает с общей суммой квадратов.

Поскольку не все точки поля корреляции лежат на линии регрессии, то всегда имеет место их разброс как обусловленный вли-янием фактора х , т. е. регрессией у по х, так и вызванный действием прочих причин (необъясненная вариация). Пригод-ность линии регрессии для прогноза зависит от того, какая часть общей вариации признака у приходится на объясненную вариа-цию

Очевидно, что если сумма квадратов отклонений, обусловленная регрессией, будет больше остаточной суммы квадратов, то уравнение регрессии статистически значимо и фактор х оказывает существенное воздействие на результат у.

, т. е. с числом свободы независимого варьирования признака. Число степеней свободы связано с числом единиц совокупности n и с числом определяемых по ней констант. Применительно к исследуемой проблеме число степеней свободы должно показать, сколько независимых откло-нений из п

Оценка значимости уравнения регрессии в целом дается с по-мощью F -критерия Фишера. При этом выдвигается нулевая ги-потеза, что коэффициент регрессии равен нулю, т. е. b = 0, и следовательно, фактор х не оказывает влияния на результат у.

Непосредственному расчету F-критерия предшествует анализ дисперсии. Центральное место в нем занимает разложе-ние общей суммы квадратов отклонений переменной у от средне го значения у на две части - «объясненную» и «необъясненную»:

- общая сумма квадратов отклонений;

- сумма квадратов отклонения объясненная регрессией;

- остаточная сумма квадратов отклонения.

Любая сумма квадратов отклонений связана с числом степе-ней свободы, т. е. с числом свободы независимого варьирования признака. Число степеней свободы связано с числом единиц совокупности n и с числом определяемых по ней констант. Применительно к исследуемой проблеме число cтепеней свободы должно показать, сколько независимых откло-нений из п возможных требуется для образования данной суммы квадратов.

Дисперсия на одну степень свободы D .

F-отношения (F-критерий):

Ecли нулевая гипотеза справедлива , то факторная и остаточная дисперсии не отличаются друг от друга. Для Н 0 необходимо опровержение,чтобы факторная дисперсия превышала остаточную в несколько раз. Английским статистиком Снедекором раз-работаны таблицы критических значений F -отношений при разных уровняхсущественности нулевой гипотезы и различном числе степенейсвободы. Табличное значение F -критерия — это максимальная величина отношения дисперсий, которая может иметь место прислучайном их расхождении для данного уровня вероятности наличия нулевой гипотезы. Вычисленное значение F -отношения признается достоверным, если о больше табличного.

В этом случае нулевая гипотеза об отсутствии связи признаков отклоняется и делается вывод о существенности этой связи: F факт > F табл Н 0 отклоняется.

Если же величина окажется меньше табличной F факт ‹, F табл , то вероятность нулевой гипотезы выше заданного уровня и она не может быть отклонена без серьезного риска сделать неправильный вывод о наличии связи. В этом случае уравнение регрессии считается статистически незначимым. Н о не отклоняется.

Стандартная ошибка коэффициента регрессии

Для оценки существенности коэффициента регрессии его ве-личина сравнивается с его стандартной ошибкой, т. е. определяется фактическое значение t -критерия Стьюдентa: которое затем сравнивается с табличным значением при определенном уровне значимости и числе степеней свободы (n - 2).

Стандартная ошибка параметра а :

Значимость линейного коэффициента корреляции проверя-ется на основе величины ошибки коэффициента корреляции т r:

Общая дисперсия признака х :

Множественная линейная регрессия

Построение модели

Множественная регрессия представляет собой регрессию результативного признака с двумя и большим числом факторов, т. е. модель вида

Регрессия может дать хороший результат при модели-ровании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Поведение отдельных экономи-ческих переменных контролировать нельзя, т. е. не удается обес-печить равенство всех прочих условий для оценки влияния одно-го исследуемого фактора. В этом случае следует попытаться выявить влияние других факторов, введя их в модель, т. е. пост-роить уравнение множественной регрессии: y = a+b 1 x 1 +b 2 +…+b p x p + .

Основная цель множественной регрессии — построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель. Спецификация модели включает в себя два круга вопросов: отбор фак-торов и выбор вида уравнения регрессии

Метод наименьших квадратов является одним из наиболее распространенных и наиболее разработанных вследствие своей простоты и эффективности методов оценки параметров линейных . Вместе с тем, при его применении следует соблюдать определенную осторожность, поскольку построенные с его использованием модели могут не удовлетворять целому ряду требований к качеству их параметров и, вследствие этого, недостаточно “хорошо” отображать закономерности развития процесса .

Рассмотрим процедуру оценки параметров линейной эконометрической модели с помощью метода наименьших квадратов более подробно. Такая модель в общем виде может быть представлена уравнением (1.2):

y t = a 0 + a 1 х 1 t +...+ a n х nt + ε t .

Исходными данными при оценке параметров a 0 , a 1 ,..., a n является вектор значений зависимой переменной y = (y 1 , y 2 , ... , y T)" и матрица значений независимых переменных

в которой первый столбец, состоящий из единиц, соответствует коэффициенту модели .

Название свое метод наименьших квадратов получил, исходя из основного принципа, которому должны удовлетворять полученные на его основе оценки параметров: сумма квадратов ошибки модели должна быть минимальной.

Примеры решения задач методом наименьших квадратов

Пример 2.1. Торговое предприятие имеет сеть, состоящую из 12 магазинов, информация о деятельности которых представлена в табл. 2.1.

Руководство предприятия хотело бы знать, как зависит размер годового от торговой площади магазина.

Таблица 2.1

Номер магазина

Годовой товарооборот, млн руб.

Торговая площадь, тыс. м 2

Решение методом наименьших квадратов. Обозначим — годовой товарооборот -го магазина, млн руб.; — торговая площадь -го магазина, тыс. м 2 .

Рис.2.1. Диаграмма рассеяния для примера 2.1

Для определения формы функциональной зависимости между переменными и построим диаграмму рассеяния (рис. 2.1).

На основании диаграммы рассеяния можно сделать вывод о позитивной зависимости годового товарооборота от торговой площади (т.е. у будет расти с ростом ). Наиболее подходящая форма функциональной связи — линейная .

Информация для проведения дальнейших расчетов представлена в табл. 2.2. С помощью метода наименьших квадратов оценим параметры линейной однофакторной эконометрической модели

Таблица 2.2

Таким образом,

Cледовательно, при увеличении торговой площади на 1 тыс. м 2 при прочих равных условиях среднегодовой товарооборот увеличивается на 67,8871 млн руб.

Пример 2.2. Руководство предприятия заметило, что годовой товарооборот зависит не только от торговой площади магазина (см. пример 2.1), но и от среднего числа посетителей. Соответствующая информация представлена в табл. 2.3.

Таблица 2.3

Решение. Обозначим — среднее число посетителей -го магазина в день, тыс. чел.

Для определения формы функциональной зависимости между переменными и построим диаграмму рассеяния (рис. 2.2).

На основании диаграммы рассеяния можно сделать вывод о позитивной зависимости годового товарооборота от среднего числа посетителей в день (т.е. у будет расти с ростом ). Форма функциональной зависимости — линейная.

Рис. 2.2. Диаграмма рассеяния для примера 2.2

Таблица 2.4

В целом необходимо определить параметры двухфакторной эконометрической модели

у t = a 0 + a 1 х 1 t + a 2 х 2 t + ε t

Информация, требующаяся для дальнейших расчетов, представлена в табл. 2.4.

Оценим параметры линейной двухфакторной эконометрической модели с помощью метода наименьших квадратов.

Таким образом,

Оценка коэффициента =61,6583 показывает, что при прочих равных условиях с увеличением торговой площади на 1 тыс. м 2 годовой товарооборот увеличится в среднем на 61,6583 млн руб.

Аппроксима́ция , или приближе́ние - научный метод, состоящий в замене одних объектов другими, в том или ином смысле близкими к исходным, но более простыми.

Аппроксимация позволяет исследовать числовые характеристики и качественные свойства объекта, сводя задачу к изучению более простых или более удобных объектов (например, таких, характеристики которых легко вычисляются или свойства которых уже известны). В теории чисел изучаются диофантовы приближения, в частности, приближения иррациональных чисел рациональными. В геометрии рассматриваются аппроксимации кривых ломаными. Некоторые разделы математики в сущности целиком посвящены аппроксимации, например, теория приближения функций, численные методы анализа.

В переносном смысле употребляется в философии как метод приближения , указание на приблизительный, неокончательный характер. Например, в таком смысле термин «аппроксимация» активно употреблялся Сёреном Кьеркегором (1813-1855) в «Заключительном ненаучном послесловии…»

Если функция будет использована только для интерполяции, то достаточно аппроксимировать точки полиномом, скажем, пятой степени:

Намного сложней обстоит дело в случае, если приведенные выше натурные данные служат опорными точками для выявления закона изменения с известными граничными условиями. Например: и . Тут уже качество результата зависит от профессионализма исследователя. В данном случае наиболее приемлемым окажется закон:

Для оптимального подбора параметров уравнений обычно используют метод наименьших квадратов.

Метод наименьших квадратов (МНК, англ. Ordinary Least Squares , OLS ) - математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функцией. МНК является одним из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным.

Если некоторая физическая величина зависит от другой величины, то эту зависимость можно исследовать, измеряя y при различных значениях x . В результате измерений получается ряд значений:

x 1 , x 2 , ..., x i , ... , x n ;

y 1 , y 2 , ..., y i , ... , y n .

По данным такого эксперимента можно построить график зависимости y = ƒ(x). Полученная кривая дает возможность судить о виде функции ƒ(x). Однако постоянные коэффициенты, которые входят в эту функцию, остаются неизвестными. Определить их позволяет метод наименьших квадратов. Экспериментальные точки, как правило, не ложатся точно на кривую. Метод наименьших квадратов требует, чтобы сумма квадратов отклонений экспериментальных точек от кривой, т.е. 2 была наименьшей.

На практике этот метод наиболее часто (и наиболее просто) используется в случае линейной зависимости, т.е. когда

y = kx или y = a + bx.

Линейная зависимость очень широко распространена в физике. И даже когда зависимость нелинейная, обычно стараются строить график так, чтобы получить прямую линию. Например, если предполагают, что показатель преломления стекла n связан с длиной λ световой волны соотношением n = a + b/λ 2 , то на графике строят зависимость n от λ -2 .

Рассмотрим зависимость y = kx (прямая, проходящая через начало координат). Составим величину φ – сумму квадратов отклонений наших точек от прямой

.

Величина φ всегда положительна и оказывается тем меньше, чем ближе к прямой лежат наши точки. Метод наименьших квадратов утверждает, что для k следует выбирать такое значение, при котором φ имеет минимум

или (19)

Вычисление показывает, что среднеквадратичная ошибка определения величины k равна при этом

, (20) где – n число измерений.

Рассмотрим теперь несколько более трудный случай, когда точки должны удовлетворить формуле y = a + bx (прямая, не проходящая через начало координат).

Задача состоит в том, чтобы по имеющемуся набору значений x i , y i найти наилучшие значения a и b.

Снова составим квадратичную форму φ , равную сумме квадратов отклонений точек x i , y i от прямой

и найдем значения a и b , при которых φ имеет минимум

;

.

Совместное решение этих уравнений дает

(21)

Среднеквадратичные ошибки определения a и b равны

(23)

. (24)

При обработке результатов измерения этим методом удобно все данные сводить в таблицу, в которой предварительно подсчитываются все суммы, входящие в формулы (19)–(24). Формы этих таблиц приведены в рассматриваемых ниже примерах.

Пример 1. Исследовалось основное уравнение динамики вращательного движения ε = M/J (прямая, проходящая через начало координат). При различных значениях момента M измерялось угловое ускорение ε некоторого тела. Требуется определить момент инерции этого тела. Результаты измерений момента силы и углового ускорения занесены во второй и третий столбцы таблицы 5 .

Таблица 5

По формуле (19) определяем:

.

Для определения среднеквадратичной ошибки воспользуемся формулой (20)

0.005775 кг -1 · м -2 .

По формуле (18) имеем

S J = (2.996 · 0.005775)/0.3337 = 0.05185 кг · м 2 .

Задавшись надежностью P = 0.95 , по таблице коэффициентов Стьюдента для n = 5, находим t = 2.78 и определяем абсолютную ошибку ΔJ = 2.78 · 0.05185 = 0.1441 ≈ 0.2 кг · м 2 .

Результаты запишем в виде:

J = (3.0 ± 0.2) кг · м 2 ;

Пример 2. Вычислим температурный коэффициент сопротивления металла по методу наименьших квадратов. Сопротивление зависит от температуры по линейному закону

R t = R 0 (1 + α t°) = R 0 + R 0 α t°.

Свободный член определяет сопротивление R 0 при температуре 0° C , а угловой коэффициент – произведение температурного коэффициента α на сопротивление R 0 .

Результаты измерений и расчетов приведены в таблице (см. таблицу 6 ).

Таблица 6

(r - bt - a) 2 ,10 -6

По формулам (21), (22) определяем

R 0 = ¯R- α R 0 ¯ t = 1.4005 - 0.002645 · 85.83333 = 1.1735 Ом .

Найдем ошибку в определении α. Так как , то по формуле (18) имеем:

.

Пользуясь формулами (23), (24) имеем

;

0.014126 Ом .

Задавшись надежностью P = 0.95, по таблице коэффициентов Стьюдента для n = 6, находим t = 2.57 и определяем абсолютную ошибку Δα = 2.57 · 0.000132 = 0.000338 град -1 .

α = (23 ± 4) · 10 -4 град -1 при P = 0.95.

Пример 3. Требуется определить радиус кривизны линзы по кольцам Ньютона. Измерялись радиусы колец Ньютона r m и определялись номера этих колец m. Радиусы колец Ньютона связаны с радиусом кривизны линзы R и номером кольца уравнением

r 2 m = mλR - 2d 0 R,

где d 0 – толщина зазора между линзой и плоскопараллельной пластинкой (или деформация линзы),

λ – длина волны падающего света.

λ = (600 ± 6) нм; r 2 m = y; m = x; λR = b; -2d 0 R = a,

тогда уравнение примет вид y = a + bx .

Результаты измерений и вычислений занесены в таблицу 7 .

Таблица 7

y = r 2 , 10 -2 мм 2

y - bx - a, 10 -4

(y - bx - a) 2 , 10 -6

Рассчитываем:

1. a и b по формулам (21), (22).

a = ¯ r 2 - b¯m = (0.208548333 - 0.0594957 · 3.5) = 0.0003133 мм 2 .

2. Рассчитаем среднеквадратичные ошибки для величин b и a по формулам (23), (24)

3. При надежности P = 0.95 по таблице коэффициентов Стьюдента для n = 6 находим t = 2.57 и определям абсолютные ошибки

Δb = 2.57 · 0.000211179 = 6·10 -4 мм 2 ;

Δa = 2.57 · 0.000822424 = 3· 10 -3 мм 2 .

4. Записываем результаты

b = (595 ± 6)·10 -4 мм 2 при Р = 0.95;

a = (0.3 ± 3)·10 -3 мм 2 при Р = 0.95;

Из полученных результатов опыта следует, что в пределах ошибки этого опыта прямая r 2 m = ƒ(m) проходит через начало координат, т.к. если ошибка значения какого-либо параметра окажется сравнимой или превысит значение параметра, то это означает, что скорей всего, настоящее значение этого параметра равно нулю.

В условиях данного эксперимента величина a не представляет интереса. Поэтому мы ею больше заниматься не будем.

5. Подсчитаем радиус кривизны линзы:

R = b / λ = 594.5 / 6 = 99.1 мм .

6. Так как для длины волны дана систематическая ошибка, подсчитаем и для R систематическую ошибку по формуле (16), взяв в качестве систематической ошибки величины b ее случайную ошибку Δb.

Записываем окончательный результат R = (99 ± 2) мм ε ≈ 3% при P = 0.95.