Параболическая орбита и движение спутника по ней. "фотометрия исз"

Что собой представляет геостационарная орбита? Это круговое поле, которое расположилось над экватором Земли, по нему искусственный спутник обращается с угловой скоростью вращения планеты вокруг оси. Он не изменяет свое направление в горизонтальной системе координат, а неподвижно висит в небе. Геостационарная орбита Земли (ГСО)представляет собой разновидность геосинхронного поля и применяется для размещения коммуникационных, телетрансляционных и других спутников.

Идея использования искусственных аппаратов

Само понятие геостационарной орбиты инициировано русским изобретателем К. Э. Циолковским. В своих работах он предлагал заселить космос с помощью орбитальных станций. Зарубежные ученые также описывали работы космических полей, например, Г. Оберт. Человеком, который развил концепцию использования орбиты для связи, является Артур Кларк. Он в 1945 году поместил статью в журнале «Wireless World», где описал преимущества работы геостационарного поля. За активный труд в данной области в честь ученого орбита получила свое второе название - «пояс Кларка». Над проблемой осуществления качественной связи думали многие теоретики. Так, Герман Поточник в 1928 году высказал мысль о том, как можно применять геостационарные спутники.

Характеристика «пояса Кларка»

Чтобы орбита была названа геостационарной, она должна отвечать ряду параметров:

1. Геосинхронность. К такой характеристике относится поле, которое имеет период, соответствующий периоду обращения Земли. Геосинхронный спутник заканчивает оборот вокруг планеты за сидерический день, который равен 23 часам 56 минутам и 4 секундам. То же время необходимо Земле для выполнения одного оборота в фиксированном пространстве.

2. Для поддержания спутника на определенной точке геостационарная орбита должна быть круговой, с нулевым наклонением. Эллиптическое поле приведет к смещению либо к востоку, либо к западу, так как аппарат движется в определенных точках орбиты по-разному.

3. «Точка зависания» космического механизма должна находиться на экваторе.

4. Расположение спутников на геостационарной орбите должны быть таким, чтобы небольшое количество частот, предназначенных для связи, не привело к наложению частот разных аппаратов при приеме и передаче, а также для исключения их столкновения.

5. Достаточное количество топлива для поддержания неизменного положения космического механизма.

Геостационарная орбита спутника уникальна тем, что только при сочетании ее параметров можно добиться неподвижности аппарата. Еще одной особенностью является возможность видеть Землю под углом в семнадцать градусов из расположенных на космическом поле спутников. Каждый аппарат отхватывает примерно одну третью часть поверхности орбиты, поэтому три механизма способны обеспечить охват почти всей планеты.

Искусственные спутники

Летательный аппарат вращается вокруг Земли по геоцентрическому пути. Для его вывода используют многоступенчатую ракету. Она представляет собой космический механизм, который приводит в действие реактивная сила двигателя. Для движения по орбите искусственные спутники Земли должны иметь начальную скорость, которая соответствует первой космической. Их полеты осуществляются на высоте не меньше нескольких сотен километров. Период обращения аппарата может составлять несколько лет. Искусственные спутники Земли могут запускаться с бортов других аппаратов, например, орбитальных станций и кораблей. Беспилотники имеют массу до двух десятков тонн и размер до нескольких десятков метров. Двадцать первый век ознаменовался рождением аппаратов со сверхмалым весом - до несколько килограммов.

Спутники запускались многими странами и компаниями. Первый в мире искусственный аппарат был создан в СССР и полетел в космос 4 октября 1957 года. Он носил имя «Спутник-1». В 1958 году США запустила второй аппарат - «Эксплорер-1». Первый спутник, который был выведен NASA в 1964 году, носил имя Syncom-3. Искусственные аппараты в основном невозвратные, но есть те, которые возвращаются частично или полностью. Их используют для проведения научных исследований и решения различных задач. Так, существуют военные, исследовательские, навигационные спутники и другие. Также запускаются аппараты, созданные сотрудниками университетов или радиолюбителями.

«Точка стояния»

Геостационарные спутники располагаются на высоте 35786 километров над уровнем моря. Такая высота обеспечивает период обращения, который соответствует периоду циркуляции Земли по отношению к звездам. Искусственный аппарат неподвижен, поэтому его местоположение на геостационарной орбите называется «точкой стояния». Зависание обеспечивает постоянную длительную связь, однажды сориентированная антенна всегда будет направлена на нужный спутник.

Передвижение

Спутники можно переводить с низковысотной орбиты на геостационарную с помощью геопереходных полей. Последние представляют собой эллиптический путь с точкой на низкой высоте и пиком на высоте, которая близка к геостационарному кругу. Спутник, который стал непригодным для дальнейшей работы, отправляется на орбиту захоронения, расположенную на 200-300 километров выше ГСО.

Высота геостационарной орбиты

Спутник на данном поле держится на определенном расстоянии от Земли, не приближаясь и не удаляясь. Он всегда находится над какой-либо точкой экватора. Исходя из данных особенностей следует вывод, что силы гравитации и центробежная сила уравновешивают друг друга. Высота геостационарной орбиты рассчитывается методами, в основе которых лежит классическая механика. При этом учитывается соответствие гравитационных и центробежных сил. Значение первой величины определяется с помощью закона всемирного тяготения Ньютона. Показатель центробежной силы рассчитывается путем произведения массы спутника на центростремительное ускорение. Итогом равенства гравитационной и инертной массы является заключение о том, что высота орбиты не зависит от массы спутника. Поэтому геостационарная орбита определяется только высотой, при которой центробежная сила равна по модулю и противоположна по направлению гравитационной силе, создающейся притяжением Земли на данной высоте.

Из формулы расчета центростремительного ускорения можно найти угловую скорость. Радиус геостационарной орбиты определяется также по этой формуле либо путем деления геоцентрической гравитационной постоянной на угловую скорость в квадрате. Он составляет 42164 километра. Учитывая экваториальный радиус Земли, получаем высоту, равную 35786 километрам.

Вычисления можно провести другим путем, основываясь на утверждении, что высота орбиты, представляющая собой удаление от центра Земли, с угловой скоростью спутника, совпадающей с движением вращения планеты, рождает линейную скорость, которая равна первой космической на данной высоте.

Скорость на геостационарной орбите. Длина

Данный показатель рассчитывается путем умножения угловой скорости на радиус поля. Значение скорости на орбите равно 3,07 километра в секунду, что намного меньше первой космической скорости на околоземном пути. Чтобы уменьшить показатель, необходимо увеличить радиус орбиты более чем в шесть раз. Длина рассчитывается произведением числа Пи на радиус, умноженным на два. Она составляет 264924 километра. Показатель учитывается при вычислении «точек стояния» спутников.

Влияние сил

Параметры орбиты, по которой обращается искусственный механизм, могут изменяться под действием гравитационных лунно-солнечных возмущений, неоднородности поля Земли, эллиптичности экватора. Трансформация поля выражается в таких явлениях, как:

  1. Смещение спутника от своей позиции вдоль орбиты в сторону точек стабильного равновесия, которые носят название потенциальных ям геостационарной орбиты.
  2. Угол наклона поля к экватору растет с определенной скоростью и достигает 15 градусов один раз за 26 лет и 5 месяцев.

Для удержания спутника в нужной «точке стояния» его оснащают двигательной установкой, которую включают несколько раз в 10-15 суток. Так, для восполнения роста наклонения орбиты используют коррекцию «север-юг», а для компенсации дрейфа вдоль поля - «запад-восток». Для регулирования пути спутника в течение всего срока его работы необходим большой запас топлива на борту.

Двигательные установки

Выбор приспособления определяется индивидуальными техническими особенностями спутника. Например, химический ракетный двигатель имеет вытеснительную подачу топлива и функционирует на долго хранимых высококипящих компонентах (диазотный тетроксид, несимметричный диметилгидразин). Плазменные устройства имеют существенно меньшую тягу, но за счет продолжительной работы, которая измеряется десятками минут для единичного передвижения, способны значительно снизить потребляемое количество топлива на борту. Такой тип двигательной установки используется для маневра перевода спутника в другую орбитальную позицию. Основным ограничивающим фактором срока службы аппарата является запас топлива на геостационарной орбите.

Недостатки искусственного поля

Существенным пороком во взаимодействии с геостационарными спутниками являются большие запоздания в распространении сигнала. Так, при скорости света 300 тысяч километров в секунду и высоте орбиты 35786 километров движение луча «Земля - спутник» занимает около 0,12 секунды, а «Земля - спутник - Земля» - 0,24 секунды. Учитывая задержку сигнала в аппаратуре и кабельных системах передач наземных служб общее запоздание сигнала «источник - спутник - приемник» достигает примерно 2-4 секунд. Такой показатель существенно затрудняет применение аппаратов на орбите в телефонии и делает невозможным использование спутниковой связи в системах реального времени.

Еще одним недостатком является невидимость геостационарной орбиты с высоких широт, что мешает проводимости связи и телетрансляций в районах Арктики и Антарктиды. В ситуациях, когда солнце и спутник-передатчик находятся на одной линии с приемной антенной, наблюдается уменьшение, а порой и полное отсутствие сигнала. На геостационарных орбитах за счет неподвижности спутника такое явление проявляется особенно ярко.

Эффект Допплера

Этот феномен заключается в изменении частот электромагнитных вибраций при взаимном продвижении передатчика и приемника. Явление выражается изменением расстояния во времени, а также движением искусственных аппаратов на орбите. Эффект проявляется как малоустойчивость несущей частоты колебаний спутника, которая прибавляется к аппаратурной нестабильности частоты бортового ретранслятора и земной станции, что осложняет прием сигналов. Эффект Допплера содействует изменению частоты модулирующих вибраций, что невозможно контролировать. В случае, когда на орбите используются спутники связи и непосредственного телевизионного вещания, данное явление практически устраняется, то есть не наблюдается изменений уровня сигналов в точке приема.

Отношение в мире к геостационарным полям

Космическая орбита своим рождением создала много вопросов и международно-правовых проблем. Их решением занимается ряд комитетов, в частности, Организация Объединенных Наций. Некоторые страны, расположенные на экваторе, предъявляли претензии на распространение их суверенитета на находящуюся над их территорией часть космического поля. Государства заявляли, что геостационарная орбита представляет собой физический фактор, который связан с существованием планеты и зависит от гравитационного поля Земли, поэтому сегменты поля являются продолжением территории их стран. Но такие притязания были отвергнуты, так как в мире существует принцип неприсвоения космического пространства. Все проблемы, связанные с работой орбит и спутников, разрешаются на мировом уровне.

Окно запуска - это такой период времени, когда наиболее просто разместить спутник на требуемую орбиту для того, чтобы он начал выполнять свои функции.

Например, очень важным фактором является выбор такого окна запуска, когда можно легко вернуть космонавтов обратно, если что-то пойдет не так. Космонавты должны иметь возможность достигнуть безопасной точки приземления, в которой кроме того, будет соответствующий персонал (никто же не хочет приземляться в тайге или Тихом океане). Для других типов запусков, включая межпланетные исследования, окно запуска должно позволить выбрать наиболее эффективный курс достижения очень далеких объектов. Если в расчетное окно запуска будет плохая погода или произойдут какие-то технические неполадки, то запуск стоит перенести в другое благоприятное окно запуска. Если спутник будет запущен пусть даже и в хорошую погоду, но в неблагоприятное окно запуска, то он может быстро закончить свою жизнь либо на неправильной орбите, либо в Тихом океане. В любом случае он не сможет выполнять требуемые функции. Время - наше все!

Что есть внутри типичного спутника?

Спутники бывают разные и имеют разное предназначение. Например:
  • Погодные спутники помогают синоптикам предсказывать погоду или просто видеть то, что происходит в данный момент. Вот типичные погодные спутники: EUMETSAT (Meteosat), США (GOES), Япония (MTSAT), Китай (Fengyun-2), Россия (GOMS) и Индия (KALPANA). Такие спутники, как правило, содержат фотокамеры, которые шлют на Землю снимки погоды. Как правило, такие спутники располагаются либо на геостационарной орбите, либо на полярных орбитах.
  • Спутники связи позволяют передавать через себя телефонные звонки и информационные соединения. Типичными коммуникационными спутниками являются Telstar и Intelsat. Самой главной частью спутника связи является транспондер - специальный радиопередатчик, который принимает данные на одной частоте, усиливает их и передает обратно на Землю на другой частоте. Спутник, как правило, содержит на борту сотни или даже тысячи транспондеров. Коммуникационные спутники чаще всего являются геосинхронными.
  • Телерадиовещательные спутники передают телевизионный (или радио) сигнал из одной точки в другую (так же как спутники связи).
  • Научно-исследовательские спутники выполняют различные научные функции. Самым известным является, пожалуй, космический телескоп Хаббл, однако, на орбите существует и множество других, которые наблюдает за всем чем только можно от солнечных пятен до гамма-лучей.
  • Навигационные спутники помогают навигации кораблей и самолетов. Самые известные из навигационных спутников - GPS и наш отечественный ГЛОНАСС.
  • Спасательные спутники реагируют на сигналы бедствия.
  • Спутники исследования Земли используются для исследования изменений на планете от температуры до предсказания таяниях полярных льдов. Самые известные из них спутники серии LANDSAT.
  • Военные спутники используются в военных целях и их назначение как правило засекречено. С появлением военных спутников стало возможным вести разведку прямо из космоса. Кроме того, военные спутники могут использоваться для передачи зашифрованных сообщений, ядерного мониторинга, изучения передвижений противника, раннего предупреждения о запуске ракет, прослушивания наземных линий связи, построение карт радаров, фотографирование (в том числе с использованием специальных телескопов для получения очень подробных картин местности).
Несмотря на существенные различия между всеми этими типами спутников, они имеют несколько общих вещей. Например:
  • Все они имеют металлический или композитный каркас и корпус. Корпус спутника содержи все необходимое для функционирования на орбите, в том числе до выживания.
  • Все спутники имеют источник энергии (как правило - солнечные батареи) и аккумуляторы для запасов энергии. Набор солнечных батарей обеспечивают электроэнергию для подзарядки батарей. Некоторые новые спутники также содержат и топливные ячейки. Электроснабжение на большинстве спутников очень ценный и ограниченный ресурс. На некоторых космических зондах применяется ядерная энергия. Энергосистема спутников постоянно наблюдается, и собранные данные по энергомониторингу и мониторингу других систем посылаются на Землю в форме телеметрических сигналов.
  • Все спутники содержат бортовой компьютер для управления и мониторинга различных систем.
  • Все они имеют радиопередатчик и антенну. В самом минимуме все спутники имеют приемопередатчик, с помощью которого наземная команда управления может запращивать информацию со спутника и наблюдать его состояние. Многими спутниками можно управлять с Земли для выполнения различных задач от смены орбиты до перепрошивки бортового компьютера.
  • Все они содержат систему управления положением. Такая система предназначена для сохранения ориентации спутника в правильном направлении.
Например, телескоп Хаббл имеет очень сложную систему управления, которая позволяет направлять телескоп в одну точку в космосе в течении часов или даже дней (несмотря на то, что телескоп движется по орбите со скоростью 27 359 км/ч). Система включает гироскопы, акселлерометры, системы стабилизации, ускорите или набор датчиков, которые наблюдают за некоторыми звездами для определения местоположения.

Какие типы орбит спутников бывают?

Существуют три основные типы орбиты, и зависят от они от положения спутника относительно поверхности Земли:
  • Геостационарная орбита (еще ее называют геосинхронной или просто синхронной) - это такая орбита, двигаясь по которой спутник всегда находится над одной и той же точкой на поверхности Земли. Большинство геостационарных спутников находится над экватором на высоте около 36000 км, что составляет примерно десятую часть от расстояния до Луны. «Место парковки спутников» над экватором становится перегруженным несколькими сотнями телевизионных спутников, погодных и спутников связи! Эта перегруженность означает, что каждый спутник должен точно управляться для предотвращения перекрытия его сигнала с сигналами соседних спутников. Телевизионные, коммуникационные и погодные спутники - всем нужна геостационарная орбита. Поэтому все спутниковые тарелки на поверхности Земли смотрят всегда в одну сторону, в нашем случае (северное полушарие) на юг.
  • Космические запуски обычно используют более низкую орбиту, что приводит к тому, что они пролетают над различными точками в различные моменты времени. В среднем высота асинхронной орбиты составляет примерно 644 километра.
  • На полярной орбите спутник обычно находится на малой высоте и проходит через полюса планеты при каждом обороте. Полярная орбита остается неизменной в космосе при вращении Земли по орбите. В результате большая часть Земли проходит под спутником, находящимся на полярной орбите. Из-за того что полярная орбита дает наибольшее покрытие поверхности Земли, ее часто используют для спутников, которые производят картографирование (например, для Google Maps).
Как рассчитывают орбиты спутников?

Для расчета орбиту спутников используется специальное программное обеспечение для компьютеров. Эти программы используют Кеплеровские данные для расчета орбиты и момента, когда спутник будет «над головой». Кеплеровские данные доступны в Интернете и для любительских радиоспутников.

Спутники используют ряд чувствительных к свету датчиков для определения собственного местоположения. После этого спутник передает полученную позицию на наземную станцию управления.

Высоты спутников

Остров Манхэттен, изображение с GoogleMaps

Если смотреть с Земли, спутники летают на разных высотах. Лучше всего думать о высотах спутников в терминах «как близко» или «как далеко» они от нас. Если рассматривать грубо, от самых близких до самых далеких, то получим следующие типы:

От 100 до 2000 километров - Асинхронные орбиты

Наблюдательные спутники обычно располагаются на высотах от 480 до 970 километров, и используются для таких задач как фотографирование. Наблюдательные спутники типа Landsat 7 выполняют следующие задачи:

  • Картографирование
  • Наблюдение за движением льда и песка
  • Определение местоположения климатических ситуаций (как например, исчезновение тропических лесов)
  • Определение местоположения полезных ископаемых
  • Поиск проблем с урожаем на полях
Поисково-спасательные спутники работают как передающие станции для ретрансляции сигналов бедствия с упавших самолетов или терпящих бедствия кораблей.

Космические аппараты (например, шаттлы) являются управляемыми спутниками, как правило, с ограниченным временем полета и рядом орбит. Космические запуски с участием людей как правило применяются при ремонте уже существующих спутников или при строительстве космической станции.

От 4 800 до 9 700 километров - Асинхронные орбиты

Научные спутники иногда располагаются на высотах от 4 800 до 9 700 километров. Они отправляют полученные ими научные данные на Землю с помощью радио-телеметрических сигналов. Научные спутники применяются для:

  • Изучения растений и животных
  • Исследование Земли, как например, наблюдение за вулканами
  • Отслеживание дикой природы
  • Астрономических исследований, включая инфракрасные астрономические спутники
  • Исследований в области физики, как например, исследования NASA в области микрогравитации или исследования солнечной физики
От 9 700 до 19 300 километров - Асинхронные орбиты

Для навигации, американское оборонное ведомство и российское правительство создали навигационные системы, GPS и ГЛОНАСС соответственно. Навигационные спутники используют высоты от 9 700 до 19 300 километров, и применяются для определения точного местоположения приемника. Приемник может располагаться:

  • В корабле на море
  • В другом космическом аппарате
  • В самолете
  • В автомобиле
  • У вас в кармане
Так как цены на потребительские навигационные приемники имеют тендецию к снижению, обычные бумажные карты столкнулись с очень опасным противником. Теперь вам будет сложнее потеряться в городе и не найти нужную точку.

Интересные факты о GPS:

  • Американские войска во время операции «Буря в пустыне» использовали более 9 000 GPS приемников.
  • Национальное управление океанических и атмосферных исследований (NOAA) США использовало GPS для измерения точной высоты монумента Вашингтона.
35 764 километров - Геостационарные орбиты

Погодные прогнозы обычно демонстрируют нам изображения со спутников, которые как правило находятся на геостационарной орбите на высоте 35 764 километра над экватором. Вы можете получить напрямую некоторые такие изображения с помощью специальных приемников и компьютерного программного обеспечения. Многие страны используют погодные спутники для предсказания погоды и наблюдения за штормами.

Данные, телевизионные сигнал, изображения и некоторые телефонные звонки аккуратно принимаются и ретранслируются коммуникационными спутниками. Обычные телефонные звонки могут иметь от 550 до 650 миллисекунд задержки на прохождение сигнала туда и обратно, что приводит к неудовольствию пользователя. Задержка возникает из-за того, что сигнал должен дойти вверх до спутника и затем вернуться на Землю. Поэтому из-за такой задержки, многие пользователи предпочитают пользоваться спутниковой связью только в том случае, если нет других вариантов. Однако, VOIP (голос через интернет) технологии встречаются сейчас с похожими проблемами, только в их случае они возникают из-за цифровой компрессии и ограничений пропускной способности, нежели из-за растояния.

Коммуникационные спутники являются очень важными ретрансляционными станциями в космосе. Спутниковые тарелки становятся меньше, потому что спутниковые передатчики становятся более мощными и направленными. С помощью таких спутников передаются:

  • Новостные ленты агентств
  • Биржевая, бизнес и другая финансовая информация
  • Международные радиостанции переходят с коротковолнового (или дополняют его) спутниковым вещанием с использованием микроволнового восходящего сигнала
  • Глобальное телевидение, такое как CNN и BBC
  • Цифровое радио

Сколько стоят спутники?

Запуск спутников не всегда проходит удачно. Вспомните провал запуска трех спутников ГЛОНАСС или например ФОБОС-ГРУНТ. На самом деле спутники стоят достаточно дорого. Стоимость тех упавших спутников ГЛОНАСС составляла несколько миллиаров рублей.

Другой важный фактор в стоимости спутников - это стоимость запуска. Стоимость запуска спутника на орбиту может варьироваться между 1.5 и 13 миллиардов рублей. Запуск американских шаттлов может достигать до 16 миллиардов рублей (полмиллиарда долларов). Построить спуник, вывести его на орбиту и затем управлять им - это очень дорогое удовольствие!

Продолжение следует…

Большинство космических полётов выполняется не по круговым, а по эллиптическим орбитам, высота которых меняется в зависимости от местоположения над Землёй. Высота так называемой «низкой опорной» орбиты, от которой «отталкивается» большинство космических кораблей, равна примерно 200 километрам над уровнем моря. Если быть точным, перигей такой орбиты равен 193 километрам, а апогей составляет 220 километров. Однако на опорной орбите имеется большое количество мусора, оставленного за полвека освоения космоса, поэтому современные космические корабли, включив свои двигатели, перебираются на более высокую орбиту. Так, например, Международная Космическая Станция (МКС ) в 2017 году вращалась на высоте порядка 417 километров , то есть в два раза выше опорной орбиты.

Высота орбиты большинства космиечских кораблей зависит от массы корабля, места его запуска и мощности его двигателей. У космонавтов она варьируется от 150 до 500 километров. Так, например, Юрий Гагарин летел на орбите с перигеем в 175 км и апогеем в 320 км. Второй советский космонавт Герман Титов летел на орбите с перигеем в 183 км и апогеем в 244 км. Американские «челноки» летали на орбитах высотой от 400 до 500 километров . Примерно такая же высота и у всех современных кораблей, доставляющих людей и грузы на МКС.

В отличие от пилотируемых космических кораблей, которым надо вернуть космонавтов на Землю, искусственные спутники летают на гораздо более высоких орбитах. Высота орбиты спутника, вращающегося на геостационарной орбите, может быть рассчитана, опираясь на данные о массе и диаметре Земли. В результате нехитрых физических расчетов можно выяснить, что высота геостационарной орбиты , то есть такой, при которой спутник «зависает» над одной точкой на поверхности земли, равна 35 786 километрам . Это очень большое удаление от Земли, поэтому время обмена сигналом с таким спутником может достигать 0,5 секунд, что делает его непригодным, например, для обслуживания онлайн-игр.

Сегодня 19 августа 2019 года. А вы знаете, какой сегодня праздник ?



Расскажите Какова высота орбиты полёта космонавтов и спутников друзьям в социальных сетях:

Орбиты связных искусственных спутников Земли- это траектории движения ИСЗ в пространстве. Они определяются многими факторами, основным из которых является притяжение спутника Землей.

Ряд других факторов – торможение спутника в атмосфере Земли, влияние Луны, Солнца, планет и т.д. - также оказывает влияние на орбиту спутника. Это влияние весьма мало и учитывается в виде так называемого возмущения орбиты спутника, т.е. отклонения истинной траектории от идеальной, вычисленной в предположении, что спутник движется только под действием притяжения к Земле. Поскольку Земля является телом сложной формы с неравномерным распределением массы, то вычислить идеальную траекторию сложно. В первом приближении считают, что спутник движется в поле тяготения шарообразной Земли со сферически-симметричным распределением масссы. Такое поле тяготения называется центральным.

Основные параметры, характеризующие движение ИСЗ, могут быть определены с помощью законов Кеплера.

Применительно к спутникам Земли законы Кеплера формулируются следующим образом.

Первый закон Кеплера: орбита спутника Земли лежит в неподвижной плоскости, проходящей через центр Земли, и является эллипсом, в одном из фокусов которого находится центр Земли.

Второй закон Кеплера: радиус-вектор спутника (отрезок прямой, соединяющий спутник, находящийся на орбите, и центр Земли) в равные промежутки времени описывает равные площади.

Третий закон Кеплера: отношение квадратов периодов обращения спутников равно отношению кубов больших полуосей орбит.

В системах связи могут использоваться ИСЗ, движущиеся по орбитам, которые отличаются следующими параметрами: формой (круговая или эллиптическая); высотой над поверхностью Земли Н или расстоянием от центра Земли; наклонением, т.е. углом φ между экваториальной плоскостью и плоскостью орбиты. В зависимости от выбранного угла орбиты подразделяются на экваториальные (φ = 0), полярные (φ = 90°) и наклонные (0 < φ < 90°). Эллиптические орбиты, кроме того, характеризуются апогеем и перигеем, т.е. расстояниями от Земли, соответственно, до наиболее удаленной и до ближайшей точки орбиты. Апогей и перигей орбиты являются концами большой оси эллипса, а линия, на которой они находятся, называется осью апсид. При высоте орбиты 35 800 км период обращения ИСЗ будет равен земным суткам. Экваториальная круговая орбита с высотой 35 800 км при условии, что направление движения спутника совпадает с направлением вращения Земли относительно своей оси (с запада на восток), называется геостационарной орбитой (ГСО). Такая орбита является универсальной и единственной. Спутник, находящийся на ней, будет казаться земному наблюдателю неподвижным. Подобный ИСЗ называется геостационарным. В действительности ИСЗ, математически точно запущенный на ГСО, не остается неподвижным, а из-за эллиптичности Земли и по причине возмущения орбиты медленно уходит из заданной точки и совершает периодические (суточные) колебания по долготе и широте. Поэтому на ИСЗ должна быть установлена система автоматической стабилизации и удержания его в заданной точке ГСО.

Большинство современных ССП базируется на геостационарных спутниках. Однако в некоторых случаях представляют интерес сильно вытянутые эллиптические орбиты, имеющие такие параметры: угол наклонения φ = 63,5°, высота в апогее примерно 40 000 км, в перигее около 500 км. Для России с ее обширной территорией за Полярным кругом такая орбита является весьма удобной. Спутник, выведенный на нее, вращается синхронно с Землей, имеет период обращения 12 ч и, совершая за сутки два полных витка, появляется над одними и теми же районами Земли в одно и то же время. Длительность сеанса связи между ЗС, находящимися на территории России, при этом составляет 8 ч. Для обеспечения круглосуточной связи приходится выводить на эллиптические орбиты, плоскости которых взаимно смещены, 3-4 спутника, образующих систему спутников.

В последнее время наметилась тенденция использования связных ИСЗ, находящихся на низких орбитах (расстояние до Земли в пределах 700…1500 км). Системы связи с использованием ИСЗ на низких орбитах благодаря значительно меньшему (практически в 50 раз) расстоянию от Земли до спутника имеют ряд преимуществ перед ССП на геостационарных спутниках. Во-первых, это меньшее запаздывание и затухание передаваемого сигнала, а во-вторых, более простой вывод ИСЗ на орбиту. Основным недостатком подобных систем является необходимость выведения на орбиту большого количества спутников для обеспечения длительной непрерывной связи. Это объясняется небольшой зоной видимости отдельного ИСЗ, что усложняет связь между абонентами, находящимися на большом расстоянии друг от друга. Например, космический комплекс «Iridium» (США) состоит из 66 космических аппаратов, размещенных на круговых орбитах с наклонением φ = 86° и высотой 780 км. Спутники размещаются в орбитальных плоскостях, в каждой одновременно находятся 11 спутников. Угловое расстояние между соседними орбитальными плоскостями составляет 31,6°, за исключением 1-й и 6-й плоскостей, угловой разнос между которыми около 22°.

Антенная система каждого ИСЗ формирует 48 узких лучей. Взаимодействие всех ИСЗ обеспечивает глобальное покрытие Земли услугами связи. В нашей стране ведутся работы по созданию собственных низкоорбитальных спутниковых систем связи «Сигнал» и «Гонец».

Для уяснения особенностей работы низкоорбитальных спутниковых систем рассмотрим схему прохождения в ней сигналов (рис. 3.2).

Рис. 3.2. Система связи с несколькими ИСЗ на низкой орбите

В этом случае на каждой ЗС должны быть установлены две антенны (А1 и А2), которые могут осуществлять передачу и прием сигналов с помощью одного из спутников, находящегося в зоне взаимной связи. На рис. 3.2 показаны ИСЗ, движущиеся по часовой стрелке по одной низкой орбите, часть которой показана в виде дуги mn. Рассматриваемая система спутниковой связи работает следующим образом. Сигнал от ЗС1 через антенну A1 поступает на ИС34 и ретранслируется через ИС33, ИС32, ИСЗ1 к приемной антенне А1 ЗС2. Таким образом, в этом случае для ретрансляции сигнала используются антенны А2 и сегмент орбиты, содержащий ИС34 и ИСЗ1. При выходе ИС34 из зоны, лежащей левее линии горизонта аа", передача и прием сигнала будут вестись через антенны А1 и сегмент орбиты, содержащий ИС35...ИС32, и т.д.

Поскольку каждый ИСЗ может наблюдаться с достаточно большой территории на поверхности Земли, то можно осуществить связь между несколькими ЗС через один общий связной ИСЗ. В этом случае спутник оказывается «доступным» многим ЗС, поэтому такая система называется системой спутниковой связи с многостанционным доступом.

Использование ИСЗ, движущихся по орбите с малой высотой, упрощает аппаратуру ЗС, так как при этом возможно снижение усиления земных антенн, мощности передатчиков и работа с приемниками меньшей чувствительности, чем в случае геостационарных спутников. Однако в этом случае усложняется система управления движением большого числа ИСЗ по орбите.

В стадии разработки находится система связи на основе низкоорбитальных 840 связных спутников, оснащенных сканирующими антенными системами с высоким коэффициентом усиления покрывающих всю поверхность Земли сетью из 20 000 больших зон обслуживания, каждая из которых будет состоять из 9 малых зон. Спутники будут связаны с наземной телекоммуникационной сетью посредством высокопроизводительных ЗС. Однако и сами низкоорбитальные спутники связи сформируют независимую сеть, где каждый из них будет обмениваться данными с девятью соседями, используя высококачественные каналы межспутниковой связи. Эта иерархическая структура должна сохранить работоспособность при отказах отдельных спутников, при локальных перегрузках и выводе из строя части средств связи с наземной инфраструктурой.

Передача сигналов в ССП.

В отличие от других систем передачи, работающих в диапазоне СВЧ, в спутниковых системах радиосигнал преодолевает значительные расстояния, что определяет ряд особенностей, к которым относят допплеровский сдвиг частоты, запаздывание сигнала, нарушение непрерывности значений запаздывания и доплеровского сдвига частоты.

Известно, что относительное перемещение источника сигнала с частотой f со скоростью vp << с вызывает доплеровский сдвиг ∆fдоп = ±fvp /c, где с - скорость распространения электромагнитных колебаний; знак «+» соответствует уменьшению расстояния между источником сигнала и приемником сигнала, а «-» - увеличению.

При передаче модулированных колебаний частота каждой спектральной составляющей изменяется в 1 + (vр /с) раз, т.е. составляющие с более высокой частотой получают большее изменение частоты, а с более низкой частотой - меньшее. Таким образом, эффект Доплера приводит к переносу спектра сигнала на значение ∆fдоп и к изменению масштаба спектра в 1 + (vp/c) раз, т.е. к его деформации.

Для геостационарных спутников доплеровский сдвиг незначителен и не учитывается. Для сильно вытянутых эллиптических орбит (орбит типа «Молния») максимальное значение доплеровского сдвига для линии вниз в полосе 4 ГГц составляет 60 кГц, что приводит к необходимости компенсировать его, например по заранее рассчитанной программе. Сложнее компенсировать деформации спектра. Для этого могут быть применены устройства либо с переменной управляемой задержкой группового или СВЧ сигнала, изменяемой по программе, либо управляющие частотами группового преобразования каналообразующей аппаратуры систем передачи с частотным разделением каналов.

Точка стояния

,

где - масса спутника, - масса Земли в килограммах , - гравитационная постоянная , а - расстояние в метрах от спутника до центра Земли или, в данном случае, радиус орбиты.

Величина центробежной силы равна:

,

где - центростремительное ускорение, возникающее при круговом движении по орбите.

Как можно видеть, масса спутника присутствует как множитель в выражениях для центробежной силы и для гравитационной силы, то есть высота орбиты не зависит от массы спутника, что справедливо для любых орбит и является следствием равенства гравитационной и инертной массы . Следовательно, геостационарная орбита определяется лишь высотой, при которых центробежная сила будет равна по модулю и противоположна по направлению гравитационной силе, создаваемой притяжением Земли на данной высоте.

Центростремительное ускорение равно:

,

где - угловая скорость вращения спутника, в радианах в секунду.

Сделаем одно важное уточнение. В действительности, центростремительное ускорение имеет физический смысл только в инерциальной системе отсчета, в то время как центробежная сила является так называемой мнимой силой и имеет место исключительно в системах отсчета (координат), которые связаны с вращающимися телами. Центростремительная сила (в данном случае - сила гравитации) вызывает центростремительное ускорение. По модулю центростремительное ускорение в инерциальной системе отсчета равно центробежному в системе отсчета, связанной в нашем случае со спутником. Поэтому далее, с учетом сделанного замечания, мы можем употреблять термин «центростремительное ускорение» вместе с термином «центробежная сила».

Уравнивая выражения для гравитационной и центробежной сил с подстановкой центростремительного ускорения, получаем:

.

Сокращая , переводя влево, а вправо, получаем:

.

Можно записать это выражение иначе, заменив на - геоцентрическую гравитационную постоянную:

Угловая скорость вычисляется делением угла, пройденного за один оборот ( радиан) на период обращения (время, за которое совершается один полный оборот по орбите: один сидерический день , или 86 164 секунды). Получаем:

рад/с

Полученный радиус орбиты составляет 42 164 км. Вычитая экваториальный радиус Земли, 6 378 км, получаем высоту 35 786 км.

Можно сделать вычисления и иначе. Высота геостационарной орбиты - это такое удаление от центра Земли, где угловая скорость спутника, совпадающая с угловой скоростью вращения Земли, порождает орбитальную (линейную) скорость, равную первой космической скорости (для обеспечения круговой орбиты) на данной высоте.

Линейная скорость спутника, движущегося с угловой скоростью на расстоянии от центра вращения равна

Первая космическая скорость на расстоянии от объекта массой равна

Приравняв правые части уравнений друг другу, приходим к полученному ранее выражению радиуса ГСО:

Орбитальная скорость

Скорость движения по геостационарной орбите вычисляется умножением угловой скорости на радиус орбиты:

км/с

Это примерно в 2.5 раза меньше, чем первая космическая скорость равная 8 км/с на околоземной орбите (с радиусом 6400 км). Так как квадрат скорости для круговой орбиты обратно пропорционален её радиусу,

то уменьшение скорости по отношению к первой космической достигается увеличением радиуса орбиты более чем в 6 раз.

Длина орбиты

Длина геостационарной орбиты: . При радиусе орбиты 42 164 км получаем длину орбиты 264 924 км.

Длина орбиты крайне важна для вычисления «точек стояния» спутников.

Удержание спутника в орбитальной позиции на геостационарной орбите

Спутник, обращающийся на геостационарной орбите, находится под воздействием ряда сил (возмущений), изменяющих параметры этой орбиты. В частности, к таким возмущениям относятся гравитационные лунно-солнечные возмущения, влияние неоднородности гравитационного поля Земли, эллиптичность экватора и т. д. Деградация орбиты выражается в двух основных явлениях:

1) Спутник смещается вдоль орбиты от своей первоначальной орбитальной позиции в сторону одной из четырех точек стабильного равновесия, т. н. «потенциальных ям геостационарной орбиты» (их долготы 75,3°E, 104,7°W, 165,3°E, и 14,7°W) над экватором Земли;

2) Наклонение орбиты к экватору увеличивается (от первоначального 0) со скоростью порядка 0,85 градусов в год и достигает максимального значения 15 градусов за 26,5 лет.

Для компенсации этих возмущений и удержания спутника в назначенной точке стояния спутник оснащается двигательной установкой (химической или электроракетной). Периодическими включениями двигателей малой тяги (коррекция «север-юг» для компенсации роста наклонения орбиты и «запад-восток» для компенсации дрейфа вдоль орбиты) спутник удерживается в назначенной точке стояния. Такие включения производятся по нескольку раз в несколько (10-15) суток. Существенно, что для коррекции «север-юг» требуется значительно большее приращение характеристической скорости (около 45-50 м/с в год), чем для долготной коррекции (около 2 м/с в год). Для обеспечения коррекции орбиты спутника на протяжении всего срока его эксплуатации (12-15 лет для современных телевизионных спутников) требуется значительный запас топлива на борту (сотни килограммов, в случае применения химического двигателя). Химический ракетный двигатель спутника имеет вытеснительную подачу топлива (газ наддува-гелий), работает на долгохранимых высококипящих компонентах (обычно несимметричный диметилгидразин и диазотный тетраоксид). На ряде спутников устанавливаются плазменные двигатели. Их тяга существенно меньше по отношению к химическим, однако большая эффективность позволяет (за счет продолжительной работы, измеряемой десятками минут для единичного маневра) радикально снизить потребную массу топлива на борту. Выбор типа двигательной установки определяется конкретными техническими особенностями аппарата.

Эта же двигательная установка используется, при необходимости, для маневра перевода спутника в другую орбитальную позицию. В некоторых случаях - как правило, в конце срока эксплуатации спутника, для сокращения расхода топлива коррекция орбиты «север-юг» прекращается, а остаток топлива используется только для коррекции «запад-восток».

Запас топлива является основным лимитирующим фактором срока службы спутника на геостационарной орбите.

Недостатки геостационарной орбиты

Задержка сигнала

Связь через геостационарные спутники характеризуется большими задержками в распространении сигнала. При высоте орбиты 35 786 км и скорости света около 300 000 км/с ход луча «Земля-спутник» требует около 0,12 с. Ход луча «Земля (передатчик) → спутник → Земля (приемник)» ≈0,24 с. Ping (ответ) составит полсекунды (точнее 0,48 с). С учетом задержки сигнала в аппаратуре ИСЗ и аппаратуре наземных служб общая задержка сигнала на маршруте «Земля → спутник → Земля» может достигать 2-4 секунд . Такая задержка делает невозможной применение спутниковой связи с использованием ГСО в различных сервисах реального времени (например в онлайн-играх) .

Невидимость ГСО с высоких широт

Так как геостационарная орбита не видна с высоких широт (приблизительно от 81° до полюсов), а на широтах выше 75° наблюдается очень низко над горизонтом (в реальных условиях, спутники просто скрываются выступающими объектами и рельефом местности) и виден лишь небольшой участок орбиты (см. таблицу ), то невозможна связь и телетрансляция с использованием ГСО в высокоширотных районах Крайнего Севера (Арктики) и Антарктиды . К примеру, американские полярники на станции Амундсен-Скотт для связи с внешним миром (телефония, интернет) используют оптоволоконный кабель длиной 1670 километров до расположеной на 75° ю.ш. французской станции Конкордия , с которой уже видно несколько американских геостационарных спутников .

Таблица наблюдаемого сектора геостационарной орбиты в зависимости от широты места
Все данные приведены в градусах и их долях.

Широта
местности
Видимый сектор орбиты
Теоретический
сектор
Реальный
(с уч. рельефа)
сектор
90 -- --
82 -- --
81 29,7 --
80 58,9 --
79 75,2 --
78 86,7 26,2
75 108,5 77
60 144,8 132,2
50 152,8 143,3
40 157,2 149,3
20 161,5 155,1
0 162,6 156,6

Из вышележащей таблицы видно например, что если на широте С.-Петербурга (~60°) видимый сектор орбиты (и соответственно кол-во принимаемых спутников) равен 84 % от максимально возможного (на экваторе), то на широте по-ва Таймыр (~75°) видимый сектор составляет 49 %, а на широте Шпицбергена и мыса Челюскина (~78°) лишь 16 % от наблюдаемого на экваторе. В этот сектор орбиты в районе Сибири попадает 1-2 спутника (не всегда необходимой страны).

Солнечная интерференция

Одним из самых неприятных недостатков геостационарной орбиты, является уменьшение и полное отсутствие сигнала в ситуации, когда солнце и спутник-передатчик находятся на одной линии с приёмной антенной (положение «солнце за спутником»). Данное явление присуще и другим орбитам, но именно на геостационарной, когда спутник «неподвижен» на небе, проявляется особенно ярко. В средних широтах северного полушария солнечная интерференция проявляется в периоды с 22 февраля по 11 марта и с 3 по 21 октября, с максимальной длительностью до десяти минут . В ясную погоду, сфокусированые светлым покрытием антенны солнечные лучи могут повредить (расплавить) приёмо-передающую аппаратуру спутниковой антенны .

См. также

  • Квази-геостационарная орбита

Примечания

  1. Noordung Hermann The Problem With Space Travel. - DIANE Publishing, 1995. - P. 72. - ISBN 978-0788118494
  2. Extra-Terrestrial Relays - Can Rocket Stations Give Worldwide Radio Coverage? (англ.) (pdf). Arthur C. Clark (October 1945). Архивировано
  3. Требование неподвижности спутников относительно Земли на своих орбитальных позициях на геостационарной орбите, а также большое количество спутников на этой орбите в разных её точках, приводят к интересному эффекту при наблюдении и фотографировании звёзд с помощью телескопа с использованием гидирования - удержания ориентации телескопа на заданной точке звёздного неба для компенсации суточного вращения Земли (задача, обратная геостационарной радиосвязи). Если наблюдать в такой телескоп звёздное небо вблизи небесного экватора , где проходит геостационарная орбита, то при определённых условиях можно видеть, как спутники друг за другом проходят на фоне неподвижных звёзд в пределах узкого коридора, как автомобили по оживлённой автотрассе. Особенно хорошо это заметно на фотографиях звёзд с длительными экспозициями, смотри, например: Babak A. Tafreshi. GeoStationary HighWay. (англ.) . The World At Night (TWAN). Архивировано из первоисточника 23 августа 2011. Проверено 25 февраля 2010. Источник: Бабак Тафреши (Ночной мир). Геостационарная магистраль. (рус.) . Астронет.ру. Архивировано из первоисточника 23 августа 2011. Проверено 25 февраля 2010.
  4. для орбит спутников, масса которых пренебрежимо мала по сравнению с массой притягивающего его астрономического объекта
  5. Орбиты искусственных спутников Земли. Вывод спутников на орбиту
  6. The Teledesic Network: Using Low-Earth-Orbit Satellites to Provide Broadband, Wireless, Real-Time Internet Access Worldwide
  7. Журнал «Вокруг Света».№ 9 Сентябрь 2009. Орбиты, которые мы выбираем
  8. Мозаика. Часть II
  9. взято превышение спутником горизонта в 3°
  10. Внимание! Настаёт период активной солнечной интерференции!
  11. Солнечная интерференция

Ссылки