Солнечные панели. Новые виды солнечных батарей Солнечная панель нового поколения

На сегодняшний день из всех известных человечеству источников альтернативной энергии наиболее популярными являются солнечные панели, батареи и прочие генераторы на основе гелиоэнергии. Учитывая текущую стоимость расходов на энергоресурсы, многие интересуются, где приобрести солнечные панели для своего дома, каковы цены на них и есть ли готовые решения. И поскольку рост курса валюты прямо отражается на платежной способности населения, все больше граждан стремятся узнать побольше о панелях российского производства.

Что такое солнечные панели и как их используют для дома

Несмотря на то что данному виду энергоснабжения домов уже более 30 лет, не так много специалистов в этой области. Почему использование солнечных панелей для частного дома так выгодно? Ответ прост: платить надо только за оборудование и установку, впоследствии энергоноситель бесплатен! В таких странах, как КНР, Соединенные Штаты, Франция, Италия и Германия, до 30 % населения устанавливает на крышу батареи, чтобы пользоваться миллиардами неиссякаемых киловатт солнечной энергии. Если это бесплатно, в чем секрет?


Принцип работы батареи следующий: представим себе полупроводники из кристаллов (например, из кремния), которые преобразовывают кванты света в составляющие электрического тока. Панель содержит сотни тысяч таких кристаллов. В зависимости от требуемой мощности площадь такого покрытия составляет от пары квадратных сантиметров (вспомним калькулятор) до сотен квадратных метров – например, для орбитальных станций.

Несмотря на кажущуюся простоту устройств, их использование на территории России очень ограничено – климатом, погодой, временем года и суток. Плюс к тому, чтобы система подавала ток в сеть, необходимо приобрести:

  • аккумулятор, который будет накапливать энергию на случай перепадов напряжения;
  • инвертор, который будет переводить постоянный ток в переменный;
  • систему, контролирующую заряд аккумулятора.

Кратко о потреблении

Среднестатистическая семья из 4 человек потребляет 250–300 кВт в месяц. Солнечные модули для бытового пользования дают в среднем 100 Вт с 1 кв. м в сутки (в ясную погоду). Для того чтобы питать полностью дом, нужно установить минимум 30, в идеале 40 секций, что обойдется не менее чем в 10 000 у. е. При этом крыша должна быть ориентирована на южную сторону, а количество солнечных дней в месяц в среднем не должно быть не меньше 18–20. Ниже приведена карта солнечных дней.


Вывод: солнечные панели хороши в качестве резервного источника электрической энергии. Кроме того, нужно знать, как их подобрать, чтобы мощности хватало для обеспечения бытовых нужд. Зато, вне зависимости от аварий, ваш дом всегда будет снабжен электричеством.

1. Панели от ЗАО «Телеком-СТВ»

Российская компания «Телеком-СТВ» (г. Зеленоград) производит продукцию в среднем на 30 % дешевле, чем немецкие аналоги: цены начинаются от 5 600 руб. за панели на 100 Вт. Панели данного производителя имеют КПД до 20–21 %. Основной «фишкой» данного предприятия стала запатентованная технология изготовления кремниевых пластин диаметром до 15 мм и солнечных модулей на их основе.


Какую батарею от ЗАО «Телеком-СТВ» можно посмотреть? Наиболее популярная модель носит название ТСМ, далее идет маркировка в зависимости от мощности: от 15 до 230 Вт (цена указана приблизительно).

Модель Мощность, Вт Габариты, мм Вес, кг Цена, руб.
ТСМ-15 18 430 × 232 × 43 1,45 от 3 500
ТСМ-40 44 620 × 540 × 43 4,05 от 6 000
ТСМ-50 48 620 × 540 × 43 4,05 от 6 575
ТСМ-80А 80 773 × 676 × 43 6,7 от 8 500
ТСМ-80B 80 773 × 676 × 43 6,7 от 9 000
ТСМ-95А 98 1 183 × 563 × 43 7,9 от 10 750
ТСМ-95В 98 1 183 × 563 × 43 7,9 от 11 000
ТСМ-110А 115 1 050 × 665 × 43 8,8 от 12 500
ТСМ-110В 115 1 050 × 665 × 43 8,8 от 12 800
..
ТСМ-270А 270 1 633 × 996 × 43 18,5 от 23 370

Основной тип производимых панелей – монокристаллические, хотя каждая модель также может быть представлена в виде мульти (поли-) кристаллической. Каждый вид имеет свои преимущества и недостатки (см. таблицу).

Выбор, конечно, ограничивается возможностями бюджета, поэтому продолжим обзор других недорогих и надежных устройств от российских производителей.

2. Hevel – завод в Чувашии

Одним из крупнейших производителей солнечных панелей в России является компания «Хевел» . В 2017 году компания провела модернизацию производства и перешла с тонкопленочной на новую гетероструктурную технологию изготовления солнечных модулей. Модули нового поколения сочетают в себе преимущества тонкопленочной и кристаллической технологий, обеспечивают эффективную работу модуля при высоких и низких температурах (от -50 °С до +85°С), а также в условиях рассеянного света. Средний КПД солнечного модуля составляет 20%. По этому показателю модули ГК «Хевел» входят в мировую тройку лидеров. Срок службы модуля составляет не менее 25 лет.


Какую батарею от Hevel можно посмотреть для примера? Вот таблица с параметрами наиболее популярного гетероструктурного модуля:

3. Рязанский ЗМКП

Рязанский завод металлокерамических приборов функционирует с 1963 года, однако с 2002 года перешел на систему международного контроля качества ISO 9001 и выпускает панели строго в соответствии с ее требованиями, а также с нормами ГОСТ 12.2.007-75.

В прейскуранте компании можно найти две актуальные модели RZMP мощностью 130 и 220 Вт. Их КПД варьируется от 12 до 17,1 %. Наносятся солнечные элементы на окрашенную алюминиевую основу методом последовательного соединения. Вот их сравнительные характеристики:

RZMP 130-Т подходит для автономного снабжения отдельных помещений, бытовых приборов (например, нагревательный котел). Более мощная модель, от 220 до 240 Вт, покупается чаще для резервного снабжения всего дома. Ее стоимость варьируется от 13 200 до 14 400 руб. за модуль.

4. Краснодарский «Сатурн»

Панели кубанского производства выпускаются с 1971 года, за этот период предприятие выпустило более 20 000 квадратных метров продукции. «Сатурн» использует две собственно освоенных технологии производства – на основе монокристаллического выращенного кремния или арсенид-галлиевые с германиевой подложкой. Последние показывают максимально высокие характеристики и используются для снабжения ответственных объектов (АЗС, предприятия непрерывного цикла и т. д.)


Оба типа модулей можно выполнить на любом каркасе, от сетки и пленки до металлических (из анодированного алюминия) и струнных типов. Фотоэлектрические преобразователи могут быть:

  • с полированной поверхностью;
  • со встроенными диодами;
  • с алюминиевым зеркалом.

Вот основные энергетические характеристики ФЭП «Сатурн», в зависимости от типа:

Эти характеристики актуальны для носителей любых размеров: на предприятии «Сатурн» можно заказать как сборные модули на крышу коттеджа, так и миниатюрные солнечные панели для датчиков, преобразователей, изделий электротехники, а также аккумуляторные батареи. По прайсам вас сориентируют только в отделе продаж.

5. «Солнечный ветер» (Solar Wind)

Это предприятие расположено в Украине. В России существует аналогичное предприятие, которое выступает скорее в роли инвестора и реализатора. Solar Wind выпускает солнечные модули мощностью от 1 до 15 кВт/ч. В зависимости от назначения и мощности в модуль может входить от пары до нескольких десятков батарей. Так, батарея 1 000 Вт включает 5 модулей, один контроллер заряда на 30 А, аккумулятор 150 А/ч (2 шт. в наборе) и инвертор 1 200 В. Срок службы батареи составляет до 18 лет.


Совет: если вы покупаете оборудование Solar Wind для круглогодичного обеспечения жилого дома энергией, стоит брать не менее 10 кВт/ч.

Чтобы получить представление о возможностях фотоэлектрических систем «Солнечный ветер» (Украина) мощностью от 1 000 до 15 000 Вт, предлагаем сравнительную таблицу из расчета на 1 день потребления.

Мощность модуля, кВт/ч 1 3 5 10 15
Пример снабжения питанием различных систем (суммарно)
Лампочка (энергосберегающая, при работе 4 часа в день) 4 шт. по 11 Вт 10 шт. по 15 Вт 10 шт. по 20 Вт 20 шт. по 20 Вт 40 шт. по 20 Вт
Кондиционер Не хватит Не хватит Не хватит 1 час в день 3 часа в день
Ноутбук питанием 40 Вт/ч 4 часа 4 часа 4 часа 4 часа 4 часа
ТВ 50 Вт/ч, 3 часа в день 50 Вт/ч, 4 часа в день 150 Вт/ч, 4 часа в день 150 Вт/ч, 3 часа в день 150 Вт/ч, 4 часа в день
Антенна спутникового ТВ, 20 Вт/ч 3 часа в день 4 часа в день 4 часа в день 3 часа в день 3 часа в день
Холодильник Не хватит 100 Вт/ч, 24 часа в день 10 Вт/ч, 24 часа в день 150 Вт/ч, 24 часа в день 150 Вт/ч, 24 часа в день
Стиральная машина Не хватит 900 Вт/ч, 40 мин в день 900 Вт/ч, 1 час в день 1 500 Вт/ч, 1 час в день 1 500 Вт/ч, 1 час в день
Пылесос, 900 Вт/ч Не хватит Не хватит 2 раза в неделю по 1 часу 2 раза в неделю по 1 часу 2 раза в неделю по 1 часу

6. Солнечные батареи «Квант»

НПП «Квант» первым предложило производство кремниевых солнечных батарей с 2-сторонней чувствительностью, а также монокристаллы арсенида галлия. Наиболее популярной моделью сегодня выступает «Квант КСМ» и ее модификация КСМ-180П. Стоимость такой батареи не превышает 18 000 руб., срок службы достигает 40 лет.


Однако приведем характеристики всех модулей. Их можно заказать как в моно-, так и в поликристалической вариации. Удельная энергетическая характеристика выше у монокристаллических панелей и достигает 200 Вт/кв.м. По сравнению с зарубежными аналогами «Квант» оптимален за счет низкой цены и относительно небольшого уменьшения КПД на протяжении всего срока службы.

Характеристика КСМ-80 КСМ-90 КСМ-100 КСМ-180 КСМ-190 КСМ-205
Мощность номинальная, Вт 80–85 90–95 98–103 180–185 190–195 205–210
Ток короткого замыкания, А 5,4–5,6 5,5–5,7 5,8–5,9 5,4–5,6 5,5–5,9 5,6–6,1
Напряжение холостого хода, В 21,2–21,5 22,2–22,4 22,8–23,0 34,8–36,6 35,1–37,2 35,9–37,8
Количество солнечных элементов 36 36 36 72 72 72
Габариты, мм 1210 × 547 × 35 1210 × 547 × 35 1210 × 547 × 35 1586 × 806 × 35 1586 × 806 × 35 1586 × 806 × 35
Коммутационная коробка, TUV IP66 IP66 IP66 IP66 IP66 IP66
Масса, кг 8,5 8,5 8,5 16 16 16
КПД, % 17,5 18,3 18,7 17,8 18,4 19,0

7. Sun Power – портативные солнечные панели

Компания Sun Power расположена в Украине и большей частью прославилась выпускаемыми перевозными солнечными комплексами. С их помощью можно получить электричество даже в походных условиях. Эти комплексы отличаются своей мобильностью, небольшими размерами и портативностью. Имеют выход USB и обладают мощностью до 500 Вт.


Другие характеристики портативных панелей Sun Power:

  • срок службы – до 30 лет;
  • имеет международную сертификацию CE RoHC;
  • новое поколение панелей может быть также интегрировано в фасад или крышу без потери эстетики.

Удобно использовать подобные решения в автономном освещении билбордов, дорог и участков, питании кемпингов и трейлеров, яхт и катеров.

8. «Квазар» – еще один украинский производитель

Компания «Квазар» выпускает широкий ассортимент фотовольтаического оборудования, в том числе солнечные панели и зарядные устройства. Солнечные батареи Kvazar изготавливаются из кремниевых кристаллов, выращенных на предприятии, и имеют усиленную алюминиевую базу. Гарантия качества, которая выдается производителем, немного настораживает – всего 10 лет. Однако электролюминесцентные и другие лабораторные тестирования подтверждают более длительный срок службы – до 25 лет.

Наш выбор: панели — KV175-200/24 M (монокристаллические), KV220-255M (также моно), KV210-240Р (вариант поли), в маркировке цифры указывают на мощность устройства.

Цена батарей – от 13 000 руб. (приблизительно) за 150 Вт. Кроме гелиопанелей «Квазар» выпускает фотоэлектрические преобразователи ячейками от 4 × 4 до 6 × 6 дюймов с КПД до 18,7 %.

9. ООО «Витасвет»

Московское предприятие ООО «Витасвет» выпускает одну базовую модель SSI-LS200 P3 в четырех вариациях мощности: от 225 до 240 Вт. Каждый модуль состоит из 60 кремниевых пластин типа мультикристалл и крепится на алюминиевый профиль.

Вот их основные параметры, полученные при испытаниях в нормальных условиях 800 Вт/кв.м:

Мощность батареи, Вт 225 230 235 240
Макс. напряжение, В 29,6 29,7 29,8 30,2
Ток короткого замыкания, А 8,1 8,34 8,41 8,44
КПД, % 13,5 13,8 14,1 14,5

Стоимость – 12 800 руб. за панель мощностью 240 Вт.

10. Завод «Термотрон» (г. Брянск)

Предприятие «Термотрон» производит автономные системы уличного освещения на солнечных батареях и мини-автономные солнечные станции. Первые поставляются на базе серийных модулей с высокой столбовой опорой.


Особенности автономных систем уличного освещения от «Термотрона»:

  • температурный диапазон эксплуатации – -40…+50 °C;
  • угол раскрытия луча – 135 на 90 градусов;
  • гарантированный срок работы – 12 лет в городских условиях;
  • высота опоры – от 6 до 11 м;
  • мощность – от 30 до 160 Вт.

Автономная станция «Экотерм», выпускаемая заводом, будет интересна владельцам загородных домов и участков. Ее применяют также на фермах, телефонных станциях, для оснащения сельских школ, больниц, магазинов. Станция работает от дизель-генератора 14,5 кВт. Цена вырабатываемой энергии при количестве 18 фотоперерабатывающих элементов – 5,12 руб./кВт, срок окупаемости – до 5 лет (цену станции уточнять у производителя).

Заключение


Мы провели обзор нескольких ведущих предприятий так называемой фотоэнергетики России и Украины, который, надеемся, даст первичное представление о целесообразности применения солнечных батарей и позволит принять верное решение. Это не все бренды, однако наиболее популярные и доступные в продаже таковы.

(Пока оценок нет)


О солнечной энергетике:
Солнечная энергетика - высокотехнологичная отрасль, получившая динамичное развитие в последние годы. Для российской экономики положительный эффект от роста доли солнечной энергетики заключается в создании высокотехнологичного производства и рабочих мест, значительных налоговых отчислениях, сокращении вредных выбросов. С течением времени солнечная электроэнергия становится дешевле традиционной генерации за счёт низких операционных расходов и отсутствия топливной составляющей.

0,5% солнечной энергии могло бы обеспечить все потребности мировой энергетики на сегодняшний день



Часто задаваемые вопросы:

Что такое инсоляция?
Инсоляция - (от лат. in solo выставлено на солнце) количество электромагнитной энергии (радиации), падающей на поверхность земли. Инсоляция измеряется числом единиц энергии, падающей на единицу поверхности за единицу времени. Обычно инсоляцию измеряют в кВт*час/м2.

Сколько солнца в России?
Россия обладает достаточно высоким уровнем инсоляции - у нас есть довольно много районов, где среднегодовой приход солнечной радиации составляет 4-5 кВт*ч на квадратный метр в день (этот показатель соизмерим с югом Германии и севером Испании - странах-лидерах по внедрению солнечных систем). При этом высокий уровень инсоляции в России не только на юге - Краснодарском крае, Ростовской области, Кавказе, но также на Алтае, да и в целом на юге Сибири, Дальнем Востоке и в Забайкалье - в этих регионах количество солнечных дней в году доходит до 300.

Как работает солнечная электростанция?
Принцип работы солнечного модуля, который является основой солнечной электростанции, довольно прост - поверхность модуля улавливает солнечный свет и за счёт проводниковых свойств кремния преобразует его в электрическую энергию.
Солнечные электростанции состоят из солнечных модулей, подключённых в единую цепь, инверторов и другого оборудования.
Существуют два основных типа солнечных электростанций: сетевые - отпускающие всю вырабатываемую электроэнергию в сеть и автономные.
На автономных станциях за счёт установки аккумуляторов есть возможность накапливать электроэнергию для использования, например, в тёмное время суток.

Как посчитать окупаемость солнечной энергоустановки?
Для расчёта окупаемости необходимы следующие показатели: мощность солнечной установки и её ежегодная выработка (зависит от инсоляции региона и типа модулей), размер тарифа за электроэнергию или стоимость подключения при отсутствии централизованного электроснабжения, а также стоимость самой установки под ключ.

Например, мощность энергоустановки составляет 3 кВт, а её расчётная ежегодная выработка составляет 5 тысяч кВт*ч. При тарифе на электроэнергию на уровне 4 рублей, такая установка позволит экономить 20 тысяч рублей в год.

Как развивается солнечная энергетика в России?
Россия не осталась в стороне от мировых трендов развития солнечной энергетики - в России есть производство солнечных модулей, строятся большие сетевые и малые автономные солнечные электростанции, разработана и запатентована собственная высокоэффективная технология производства гетероструктурных модулей.
Установленная мощность солнечных электростанций в России достигает порядка 500 МВт, а до 2024 года планируется довести эти показатели до 1,5 ГВт. Развивается и розничный рынок - сегодня в России практически в каждом российском регионе есть компании, которые предлагают солнечные решения.
Со второго квартала 2017 года группа компаний "Хевел" приступила к производству солнечных модулей нового поколения по гетероструктурной технологии - это наиболее перспективная из существующих сегодня технологий.
Один из наиболее перспективных новых сегментов, который Россия успешно освоила - гибридная генерация с использованием возобновляемых источников энергии. В 2013 году в Республике Алтай запущена первая в мире автономная гибридная энергоустановка, работающая на солнечной и дизельной генерации. Такие решения перспективны не только для труднодоступных и изолированных российских территорий, но и как технология на экспорт - в странах Африки и Азии, по разным оценкам, более 1,2 млрд людей не имеют доступа к электроэнергии и тратят ежегодно более 27 млрд долларов на керосин и свечи.

Когда солнечная энергетика будет доступна каждому?
Во всём мире поддержка солнечной энергетики начиналась именно «с крыш» - потребители после установки частных солнечных установок получали либо существенную скидку на оплату электроэнергии, либо специальный «зелёный» тариф, по которому они могли отпускать электроэнергию в сеть. Это обеспечило ускоренный рост технологий, а развитие конкуренции, экономия масштаба и автоматизация производств привели к тому, что капитальные затраты на строительство СЭС в мире за последние 8 лет снизились в 5 раз. В России уже локализовано производство компонентов, поэтому вне зависимости от курса валют солнечная энергетика продолжит дешеветь для российских потребителей.
Сегодня в силу в силу технологических особенностей энергосистемы и нормативного регулирования рынка, 90% всех «зелёных» энергоустановок небольшой мощности - до 10 кВт - это автономные или гибридные системы, не включённые в единую энергосистему. Технологическое включение частных владельцев солнечных установок в работу розничного рынка электроэнергии сегодня хотя и не запрещено формально, на практике труднореализуемо - в российском законодательстве нет положений, определяющих статус такого потребителя-производителя, а у энергосбытовых компаний нет обязательств по покупке «солнечных» объёмов электроэнергии. Тем не менее, в ряде российских регионов уже есть примеры покупки «зелёной» электроэнергии у простых потребителей энергосбытовыми компаниями.
Сейчас правительство поручило проработать вопрос об упрощении продажи зелёной электроэнергии от частных домохозяйств в общую сеть. В 2017 году будем следить за развитием событий.
Другая форма поддержки возобновляемой энергетики - субсидирование кредитов на покупку солнечных энергоустановок. В России этот сегмент кредитования только начинает развиваться, но это вопрос 2-3 лет и скоро купить солнечную установку для дачи в рассрочку или по льготному кредиту будет не сложнее, чем бытовую технику.

Какие перспективы у солнечной энергетики сегодня?
В 2016 году в солнечной энергетике случился настоящий бум - по оценкам различных аналитических агентств было построено порядка 76 ГВт солнечных мощностей.
Так что перспективы самые радужные - инвестиции в солнечную энергетику растут, и Россия просто не сможет оставаться в стороне. У нас огромное количество энергодефицитных и изолированных от общей сети территорий с высоким уровнем инсоляции, где развитие солнечной энергетики не просто эффективно, но и позволит сэкономить миллионы бюджетных средств, которые сейчас идут на сдерживание роста тарифов на электроэнергию.



Использование солнечной радиации для выработки электричества – самое перспективное направление среди многих альтернативных источников. Учитывая регулярно возрастающую цену на достаточно дорогую электроэнергию, многие предприятия и жители России заинтересованы в приобретении солнечных панелей и электростанций, в том числе продуктов отечественного производителя, выпускающего качественный и недорогой товар.

Солнечные батареи, собранные на российских предприятиях, в сравнении с аналогичной зарубежной продукцией обладают следующими преимуществами :

  1. Оснащены антибликовым покрытием, позволяющим иметь повышенный КПД.
  2. Работают в широком диапазоне температур – от -50 до 70 о С.
  3. Способны выдержать удар и механическое воздействие большой силы.
  4. Полноценно работают даже в пасмурную и дождливую погоду.
  5. Стоимость продукции относительно зарубежных аналогов значительно ниже.

Недостатки российских солнечных панелей являются следствием отсутствия государственной поддержки данной отрасли и не отлаженностью процесса производства, из-за чего в ряде случаев проявляются недостатки в качестве сборки, количестве и ассортименте выпускаемой продукции.

Российские модули отличаются повышенной надежностью, что достигается применением закаленного стекла, а для предотвращения деформации – металлических каркасов. Аморфным модулям механические факторы не страшны, а благодаря своим физическим свойствам, их допустимо сворачивать в рулон и использовать в ситуациях повышенной сложности.

Подробнее про это

Российские производители солнечных панелей

В России основную часть всех солнечных модулей производят следующие заводы:

ООО Хевел , находящийся в Новочеркасске. Производит тонкопленочные гибридные и промышленных нужд. Выпускаемая продукция:

  • Модули низкого и высокого напряжения HEVEL Pramac P-серии (Р7, P7L, P7F, P7LF). Изготавливаются по тонкопленочной микроморфной технологии, способны преобразовывать в электричество видимый и инфракрасный спектр света. Цена 7500 руб.;
  • Тонкопленочные модули (110-135 Вт), изготавливаются на основе технологии аморфного кремния, за счет чего повышен КПД модулей в сравнении с изделиями предыдущих поколений. Цена 7400-7600 руб.

Читайте так же: Обзор распределительных электрических шкафов

ЗАО Телеком-СТВ , расположенный в Зеленограде, производит легкие небольшие бытовые модули на основе поли- и монокристаллических элементов и гибридные батареи следующих модификаций:

  • Монокристаллические с мощностью 18-27 Вт;
  • Монокристаллические повышенной эффективности 5-250 Вт;
  • Мультикристаллические 5-25 Вт;
  • Складные – 120 и 180 Вт;
  • Электростанции морского применения 16-215 Вт;
  • Зарядные устройства 12 Вт;
  • Мини модули 0,019-0,215 Вт.

Цена на панели составляет 1,3 $/Втпик, или от 280 руб. за модуль.

Видео с рассказом о компании и ее возможностях

ОАО Сатурн , г. Краснодар выпускает панели и электростанции на основе арсенида галлия, которые применяются в космической промышленности. Среди моделей выпускаемых солнечных батарей можно отметить следующие:

  • Панель СБ КА «Спектр-Р» (Si);
  • СБ КА «Orbcomm» (GaAs);
  • СБ КА «Ресурс ДК» (Si);
  • Модуль СБ КА «ГЛОНАСС» (Si и GaAs).


из г. Рязань производит батареи, отличающиеся мощностью, надежностью, и высоким качеством исполнения, которые подойдут для энергообеспечения дома, зарядки портативных приборов и других задач. Ассортимент выпускаемых солнечных панелей следующий:

  • Модуль Тип RZMP-220 – применяется в автономных зарядках. Ассортимент моделей: RZMP-240 (250 – 275). Цена от 14500 руб.;
  • Тип RZMP-130 – используется в автономных системах с током 12 В, и любым контроллером зарядки. Ассортимент моделей: RZMP-130 (135 – 165). Цена 14600-18400 руб.;
  • Тип RZMP «Фотоэлемент Р» – используется в сетевых и автономных устройствах с контроллерами зарядки. Ассортимент моделей: RZMP-280 (285, 290). Цена от 19 тыс. руб.
Солнечные батареи, изготовленные на основе технологии аморфного кремния, более эффективны по сравнению с монокристаллическим, что заметно проявляется при недостатке освещения, достигая разницы в производительности до 30%, но почти не реагируют на изменение освещенности, проявляя «инерционность» при восстановлении освещения, продолжая функционировать с такой же мощностью.

Зарубежные фирмы-производители

Самыми крупными фирмами, выпускающими солнечные панели и электростанции, выступают следующие фирмы:

  1. Motech – тайванская компания, имеющая производственные площади в США в виде дочерней фирмы AES Polysilicon. Начав производство с ячеек для батарей, постепенно нарастила виды выпускаемой продукции до поликристаллического кремния, пластин и готовых панелей.
  2. Yingli Green Energy – старая, вертикально интегрированная китайская компания, которая, благодаря наличию производственных мощностей по выработке поликристаллического кремния, входит в число фирм, выпускающих весь ассортимент панелей с наименьшей себестоимостью. Последней серией выпускаемых батарей стали панели «Panda».
  3. Suntech – крупная китайская фирма, внедряющая с 2010 г. вертикальную интеграцию для сокращения издержек производства и сокращения себестоимости продукции.
  4. Trina Solar – китайская фирма, производящая качественные панели, и реализующая их по минимальной цене, благодаря невысокой себестоимости продукции.
  5. Hanwha Solar One – корейский производитель. Изготавливает качественные солнечные электростанции на заводах, расположенных в Китае.
  6. Canadian Solar – фирма со штаб-квартирой в Канаде, а производством в Онтарио и Китае. Отличается большим ассортиментом и объемами производимой продукции.
  7. Solarworld – крупный немецкий производитель, нацеленный на рынки Европы и США, и не имеющий своих заводов в азиатском регионе.
  8. First Solar – американский производитель тонкопленочных панелей на основе теллур-кадмиевой технологии, которая отличается самой низкой себестоимостью батарей относительно остальных конкурентов.
  9. Sunpower – производит на территории США наиболее эффективные солнечные электростанции, но во время кризиса испытывает спад производства из-за высоких затрат.
  10. Renewable Energy Corporation – норвежская компания, выпускающая модули и поликристаллический кремний. Из-за продолжающегося кризиса перенесла производственные мощности в Сингапур.
  11. Panasonic/Sanyo производит высокоэффективную продукцию, нацеленную на рынки Японии и США.

На протяжении многих тысячелетий человечество использовало природные ресурсы для получения энергии. Начиная с дров, которые сжигали, чтобы согреться и приготовить пищу, и заканчивая атомной энергетикой. Земные запасы оказались невечными, а потребности современного общества несопоставимо высокими, по сравнению с процессами возобновления. Самым перспективным направлением в поисках альтернативных источников энергии стали новые технологии солнечных панелей.

Гениальное изобретение

Уже в конце XIX ст. ученые стали задумываться над использованием энергии Солнца. Поводом послужила работа известного французского физика А. Беккереля – «Электрические явления, происходящие от освещения тел». В ней он описал фотовольтаический эффект – возникновения напряжения или электрического тока в веществах под воздействием света. Неоценимый вклад в 1873 г. сделал английский инженер-электрик У. Смит, открывший фотопроводимость селена. В 1887 г. немецкий физик Герц открыл внешний фотоэффект, изучив выход электронов из вещества при воздействии на него светом.

Еще более полувека ученые трудились над созданием прямого преобразователя света в электроэнергию. В 1950-х гг. специалистами компании Bell Laboratories была создана первая полноценная солнечная панель. Новые технологии сразу вызвали огромный интерес в космической сфере и, спустя всего 4 года, в космос были запущены американский и советский спутники, оснащенные солнечными батареями.

Солнечная энергия сегодня

Казалось бы, зачем строить ядерные реакторы, когда чуть более чем в 8 световых минутах от нас находится термоядерный источник колоссальной энергии – Солнце. Если представить мощность фотонного потока в Ваттах, то в среднем с учетом полюс-экватор, день-ночь и лето-зима, получится 325 Вт на 1 м². Учитывая площадь поверхности земли – 510,1 млн. км², выходит, что наша планета постоянно принимает 165,7 триллионов кВт в час.

За одни сутки от Солнца на Землю поступает столько энергии, сколько не смогут выработать за год все электростанции мира.

Преобразование световой энергии

В настоящее время использование энергии Солнца стало актуальной задачей. Ведь это самый дешевый и экологически чистый способ получения электроэнергии и тепла. По сравнению с ТЭС, конечная цена электроэнергии для потребителя обходится на 80% дешевле. Потребность в альтернативных источниках недорогой электроэнергии повысила спрос на солнечные батареи, а конкуренция между производителями дала стимул научным разработкам новых технологий.

Существует 3 способа преобразования световой энергии, которые уже широко применяются по всему миру.

Это самый простой способ с применением недорогого оборудования. Принцип действия заключается в нагревании воды Солнцем. Такие установки до недавнего времени применялись в основном только в жарких странах для горячего водоснабжения. Современные коллекторы, произведенные в России, рассчитаны для эксплуатации в северных регионах. При температуре на улице — 10°C в ясную погоду они нагревают воду до 80-90°C.

Сравнительно новая технология, которая активно внедряется в Германии. Изначально установка была задумана для получения дешевого водорода без причинения вреда окружающей среде. Сам водород ‒ это самое экологическое топливо. В отличие от углеводородов, продукт его сгорания ‒ обыкновенный водяной пар (H 2 + 0,5 O 2 → H 2 O). В ходе разработок был получен целый энергетический комплекс, способный обеспечить частное хозяйство электроэнергией, горячим водоснабжением и отоплением. В хорошую погоду электроэнергию вырабатывают батареи, а излишки энергии расходуются на получение водорода. При недостатке генерированного электричества, в ход пускается накопленный водород. Ведущие производители таких комплексных систем ‒ это компании HPS Home Power Solutions GmbH и CNX Construction.

Прямое преобразование энергии Солнца в электрическую постоянно совершенствуется и расширяется. Стремительный рост внедрения СЭС подтверждается статистикой. В 2005 общая мощность солярных проектов составляла всего 5 ГВт, а уже в 2014 – 150 ГВт. Сегодня в мире существует множество таких электростанций, самые крупные из которых:

  • «Топаз», Калифорния – 1096 МВт;
  • «Agua Caliente», Аризона – 626 МВт;
  • «Mesquite», Аризона – 413 МВт;
  • «Solar Ranch», Калифорния – 399 МВт;
  • «Хуанхэ», Цинхай – 317 МВт;
  • «Каталина», Калифорния – 204 МВт;
  • «Xitieshan», Цинхай – 150 МВт;
  • «Нинся Qingyang», Нинся – 150 МВт;
  • «Перово», Крым – 133 МВт;
  • «Серебро», Невада – 122 МВт.

В России в настоящий момент работает 23 СЭС общей мощностью 250,318 МВт. К тому же применяемое оборудование постоянно модернизируется, а мощности наращиваются.

В настоящее время в стадии проектирования и строительства на территории РФ находится 31 СЭС.

Кроме крупномасштабных энергетических проектов, солнечные батареи все больше применяются в быту и в различного рода устройствах. Их устанавливают на крышах частных домов, на опорах уличного освещения, встраивают в портативные зарядные устройства, вычислительную технику и автономные приборы освещения для придомовой территории.

Среди самых необычных решений можно отметить велодорожку в Нидерландах и километровый участок автодороги во Франции, выполненные с покрытием из фотоэлементов, а в Корее разработали батарею-имплантат. Он в 15 раз тоньше волоса, предназначен для вживления под кожу и способен питать имплантированные приборы.

Принцип действия

Светоприёмная панель состоит из ячеек (модулей), которые выполняются из двуслойного полупроводникового материала, обладающего свойством фотопроводимости. Верхний слой полупроводника типа «n» имеет отрицательный потенциал, а нижний типа «p» ‒ положительный. При попадании на верхний слой лучей света происходит внешний фотоэффект. Другими словами, полупроводник «n» начинает отдавать электроны. В это же время нижний слой «p», наоборот, способен захватывать электроны. Таким образом, если замкнуть цепь, подсоединив нагрузку к слоям, электроны, покинувшие верхний слой, устремятся через нагрузку к нижнему слою. Затем через p-n переход опять возвращаются в верхний слой.

Реальные достижения

Для создания модулей применяется множество материалов, самыми эффективными по лабораторным исследованиям оказались многослойные фотоэлементы типа GaInP/GaAs/Ge, показавшие коэффициент фотоэлектрического преобразования 32%. При этом в реальности были установлены значительно большие рекордные показатели.

Компания Sharp в 2013 г. создала трехслойный фотоэлемент на индиево-галлий-арсенидной основе, который показал результат КПД 44,4%. Их рекорд в этом же году превзошли ученые Института систем солнечной энергии общества Фраунгофера. В конструкции своего фотоэлемента они применили линзы Френеля, чем добились показателя в 44,7%. Через год они превзошли сами себя и, благодаря особой фокусировке, линзы смогли достичь КПД 46%.

Современные разработки

Одно из перспективных направлений ‒ преобразование в электроэнергию всех спектров излучения. Разработки в этом направлении ведутся многими компаниями, институтами, научными центрами и результаты уже есть.

Теория наноантенн

Идея преобразования излучения Солнца в электрический ток по принципу выпрямляющей антенны, работающей в диапазоне оптических волн 0,4-1,6 мкм, появилась еще в 1972 г. и принадлежит Р. Бейли. Потенциальный КПД таких антенн в теории составит 85%. Первая попытка создать солярный преобразователь на наноантеннах была предпринята в 2002 г. компанией ITN Energy Systems, которая не увенчалась успехом. Несмотря на это, данная методика рассматривается как наиболее перспективная и исследования продолжаются.

Сегодня этот материал, как альтернатива кремнию, наиболее популярный среди производителей. Его стоимость намного дешевле, что в конечном итоге положительно влияет на цену продукта. При этом в его состав входит токсичный свинец, который долгое время пытались заменить. Группа нидерландских ученых, работая над этим вопросом, случайно совершила открытие.

Свинец заменили оловом и при тестовых исследованиях заметили странное явление. «Горячие электроны», то есть электроны с повышенной энергией, отдавали ее через несколько наносекунд, вместо нескольких сотен фемтосекунд, что значительно дольше. В обычных панелях такие электроны преобразовываются в тепло, а не в электричество. В данном случае за счет медлительности электронов появляется возможность преобразовать их в электроэнергию, до того, как они станут теплом.

Пока ученые выясняют, почему горячие электроны замедляют свое рассеивание и как можно заставить их рассеиваться еще медленнее. По словам профессора фотофизики и оптоэлектроники М. Лои, теоретические прогнозы КПД такой батареи составят 66%.

Идеальное излучение

Чтобы решить проблему поглощения светоэлементом всего спектра излучения Солнца, команда исследователей из Хайфа (Израиль) предложили нестандартное решение. В опытах они решили преобразовать солнечный свет в идеальное излучение. Для этого они разработали и применили уникальный фотолюминесцентный материал. Подобная технология используется в светодиодных лампах, где диодное свечение поглощается люминофором и преобразовывается в свечение, оптимальное для восприятия человеком. В случае с элементом, материал преобразует весь спектр излучения в свет, идеально поглощающийся панелью. По утверждению молодых ученых, преобразование света позволит увеличить конверсию в электричество до 50%.

Многослойные панели для установки на крыше

Ранее ученые из университета Нового Южного Уэльса предложили концентрировать излучение Солнца с помощью зеркал. Такая методика позволила значительно увеличить эффективность работы элементов. Сегодня эта технология применяется на множестве СЭС, однако для батарей, устанавливаемых на крышах частных домов, такая конструкция невозможна. Увеличить эффективность преобразования неконцентрированного света до 53% предложили разработчики германского научного центра Agora Energiewende.

В основе их изобретения лежит многослойная панель способная поглощать 4 диапазона света. Специальный преломляющий слой отражает инфракрасный спектр к кремниевой части и пропускает остальной свет к трехслойной панели. Первый слой ‒ индий-галлий-фосфид, второй – индий-галлий-арсенид и третий ‒ германий. Каждый поглощает свет в определенном диапазоне, и в результате получается «выжать» максимум энергии.

Теоретически конструкция идеальна, но на практике для применения на крыше возникли проблемы со сложностью обслуживания. Пока разрабатываемая для частного сектора батарея больше подходит для электростанций, но работы по ее усовершенствованию продолжаются.

Энергия днем и ночью

Особое внимание многих научных изданий привлекли разработки китайских ученых. Это не удивительно, ведь Китай в этой области держит первенство и является крупнейшим поставщиком солнечных панелей, пользующихся спросом по всему миру.

Китайские разработчики предложили панель, работающую не только в светлое время суток, но и ночью. Секрет заключается в слое люминофора с длительным послесвечением. Днем непоглощённый фотоэлементом свет задерживается люминофором, который светится ночью, отдавая энергию фотоэлементам. Хотя ночное КПД составляет всего 25%, такие батареи смогут значительно повысить эффективность солнечной энергетики.

Инженерные решения

С ростом СЭС по всему миру появляется новая проблема, особо актуальная для европейских стран. Для строительства таких электростанций необходимо большое пространство. В некотором плане эту проблему решают интеграцией фотоэлементов в дорожное покрытие и установкой светоприёмников на крышах. Но часто приходится модернизировать кровельные конструкции, а в некоторых случаях установка противоречит архитектурным особенностям. Актуальность повышения интеграционных возможностей солнечных батарей приобрела критическую отметку, поэтому над этим сегодня работают ведущие инженеры и архитекторы.

Кровля из фотоэлементов

Интересную конструкцию на конференции Solar Power International 2017 в Лас-Вегасе представила компания Hanergy. Кровельная плитка Hantiles представляет собой волнообразную черепицу со встроенными фотоэлементами. Совместив кровельный материал и фотоэлементы, сохраняется эстетический вид постройки, а кровельная конструкция не требует дополнений. К тому же по стоимости получается дешевле, чем приобретать отдельно кровлю и панели.

Облицовка стен солнечными панелями

Швейцарский центр микротехники и электроники «CSEM» предложил новую технологию по производству наружных стеновых облицовочных панелей, которые одновременно являются еще и солнечными. Особенность заключается в сохранении качеств облицовочного материала. Панели выглядят монотонно и обладают высокими тепло- и звукоизоляционными свойствами. Пока были представлены только белые варианты, но разработчики говорят, что возможен любой цвет.

Скоро вместо энергосберегающих окон можно будет устанавливать энергогенерирующие. Инновационное окно от разработчиков национальной лаборатории Лос-Аламоса визуально ничем не отличается от простых окон. При этом в них применен однокамерный стеклопакет со встроенными квантовыми точками на основе марганца на внешнем стекле и на основе селенид меди-индия на внутреннем. Стекла выступают в роли люминесцентного концентратора и, поглощая свет, перенаправляют его к краям рамы, где он преобразуется в электроэнергию встроенными фотоэлементами.

Еще дальше пошли немецкие инженеры из Йенского университета. Они предложили смарт-окна. Идея «умных» окон не новая. Раньше другими разработчиками предлагались стекла, изменяющие светопрозрачность и вырабатывающие электроэнергию за счет заламинированных фотоэлементов. В этот раз применена принципиально новая технология LaWin. Теперь к функциям окон добавилась способность работать как освещение и отопление.

Подзарядка на ходу

Японские разработчики из института RIKEN и Токийского университета изобрели ультратонкий гибкий фотоэлемент, который не боится воды и растягивающих нагрузок. При интеграции такой батареи в текстиль можно создавать одежду с возможностью подключения мобильных устройств или любой другой электроники.

В 1991 году в Германии, в столице Баварии Мюнхене, открылась выставка INTERSOLAR EUROPE. На этой выставке ведущие производители систем солнечной энергетики представили свои самые новейшие разработки.

По замыслу организаторов этой выставки – компании Freiburg Wirtschaft Touristik und Messe GmbH & Co. KG – эта международная выставка была полностью посвящена использованию в различных сферах солнечных элементов фотовольтаики, а также компонентов солнечного теплоснабжения. Выставка сразу же привлекла внимание специалистов из многих стран мира. Она имела большой успех, поэтому организаторы решили сделать ее традиционной и проводить ежегодно.

На выставку, которая проходит в мае-июне, съезжаются руководители крупнейших компаний-производителей, а также компаний, использующих различные виды изделий солнечной энергетики, приезжают разработчики, инженеры, ученые, работающие в этой области.

Все хотят ознакомиться с новыми идеями, новейшими технологиями в области применения энергии солнца. Специалисты обмениваются опытом, представляют свои последние разработки. В выставочных залах можно увидеть миниатюрные зарядные устройства и самые мощные солнечные батареи, прозрачный телевизор на солнечных батареях и солнечный дом, различные приборы, устройства, машины, работающие исключительно от энергии солнца.

Эта выставка не предназначена для широкой публики, а рассчитана исключительно на профессионалов. На ее площадках проводятся семинары, конференции для специалистов, работающих в областях фотовольтаики, систем хранения энергии, возобновляемых отопительных технологий. Для презентации самых интересных разработок выделяются отдельные павильоны.

На двух последних выставках китайские и южнокорейские производители солнечных модулей представили свои новейшие изделия - панели мощностью более 300 ватт.

Солнечная батарея LG 315 N1C-G4 NeON™2

Уже из самого названия этого солнечного модуля южнокорейской компании LG следует, что заявленная мощность этого модуля составляет 315 ватт. Для компании LG очень важно выйти на рынок альтернативных источников энергии не просто в качестве одного из производителей, а в качестве одного из ведущих производителей систем фотовольтаики.

Поэтому гарантия качества продукции является одним из главных приоритетов компании. Солнечные панели разработаны и производятся с использованием самых передовых технологических процессов.

И фотопреобразователи, из которых составлена эта солнечная батарея, выполнены с наивысшими показателями качества и эффективности.

Ячейки выполнены на базе монокристаллического кремния по специальной двусторонней технологии. Благодаря своим качествам эти ячейки способны пропускать солнечные лучи, которые, отражаясь от специального покрытия тыльной стороны ячейки, способствуют повышению генерации электрического тока. То есть каждая ячейка может вырабатывать электрический ток обеими своими сторонами, повышая тем самым мощность модуля.

Модуль LG 315 N1C-G4 NeON™2. Лицевая сторона

Перед сборкой модуля каждая пластина проходит тщательнейший контроль на предмет строгого соответствия размерам (точность до микрометра) и обнаружения возможных механических повреждений. После проверки отобранные ячейки проходят очередную стадию подготовки. Для минимизации отражения солнечного света ячейки проходят стадию жидкостного травления щелочью. Ячейки с лицевой стороны ламинируются трехслойным покрытием EVA (этиленвинилацетат) и специальной отражающей пленкой с тыльной.


Модуль LG 315 N1C-G4 NeON™2. Тыльная сторона

Затем собранный модуль инкапсулируется для защиты ячеек от проникновения влаги, после чего покрывается трехмиллиметровым антибликовым противоударным стеклом. Рама модуля выполнена из анодированного профильного алюминия. На тыльной стороне устанавливается многофункциональная распределительная коробка с байпасными диодами.


Многофункциональная распределительная коробка

Благодаря такой технологии изготовления модули LG NeON ™ 2 имеют характерный черный цвет, что делает их привлекательными еще и с эстетической точки зрения.


Номинальная мощность 315 ватт.
Эффективность 19.2%

N-типа
Размеры (ДхШхТ) 1640х1000х40 миллиметров
Вес 17. 0 ± 0.5 кг
Тип разъемов МС-4
Класс защиты IP67
Стоимость модуля 30000 рублей

Солнечная батарея BenQ SunForte 333 PM096B00

В 2001 году на Тайване, в городе Синьчжу, произошло объединение двух крупных китайских компаний, работающих в области фотовольтаики. Новое объединение получило название BenQ Solar. Эта объединенная компания сразу заявила о себе, выпустив на мировые рынки высококачественные мощные гелиевые модули.

Солидная научно-исследовательская база и высокотехнологичные производственные мощности позволяют компании постоянно совершенствовать свою продукцию, внедряя самые передовые технологии. Начиная с 2013 года, компания приступила к производству гелиевых модулей по так называемой «обратно-контактной технологии.

Применение этой технологии дало возможность резко повысить мощность солнечных батарей при одновременном уменьшении размеров. Параллельно была увеличена и эффективность изделий.


Солнечная батарея SunForte PM096B00

Модуль SunForte PM096B00 – это на сегодняшний день самый мощный модуль, выпускаемый компанией BenQ Solar. Он выполнен по обратно-контактной технологии, что позволило получить выходную мощность 333 ватта при подтвержденной эффективности 20.4%.

По сравнению с традиционными модулями при равных габаритных размерах эти солнечные батареи производят значительно больше электроэнергии, что дает возможность уменьшить количество модулей и занимаемую ими площадь. Потери мощности составляют 5% за 5 лет, 13% за 25 лет эксплуатации.


Площадь, занимая обычными батареями для домашней электростанции в 4410 ватт


Площадь, занимая батареями SunForte PM096B00 для домашней электростанции в 5940 ватт

Модули сертифицированы по IEC/EN 61215 , IEC/EN 61730 и UL 1703.
Ячейки модуля ламинированы трехслойным покрытием пленки EVA, сам модуль защищен закаленным противоударным стеклом с антибликовым покрытием, толщиной 3.2 миллиметра. На тыльной стороне модуля расположена многофункциональная распределительная коробка с байпасными диодами и соединительными кабелями. Модуль заключен в профиль из анодированного алюминия, покрытого черной краской.

Основные характеристики модуля.
Номинальная мощность 333 ватта.
Эффективность 20.4%
Количество ячеек 96 (8х12) штук
Материал Монокристаллический кремний
Тип ячеек Высокоэффективные с задними проводниками
Размеры (ДхШхТ) 1559х1046х46 миллиметров
Вес 18.6
Тип разъемов ТЕ, совместимые с МС-4
Класс защиты IP67
Стоимость модуля 34000 рублей.

Солнечная батарея NeON™ 2 BiFacial

Настоящей изюминкой Мюнхенской выставки INTERSOLAR EUROPE в 2016 году стала гелиевая панель NeON™ 2 BiFacial южнокорейской компании LG, которая каждый год представляет здесь свои новейшие разработки. И в последние годы эти новинки удостаиваются высших наград выставки. Не стал исключением и 2016 год. Двусторонний гелиевый модуль NeON™ 2 BiFacial заслуженно получил очередную награду.


Гелиевая батарея компании LG NeON™ 2 BiFacial

На сегодняшний день это самый мощный модуль с повышенной эффективностью. Его прозрачные фотоэлементы собирают не только свет, попадающий на его лицевую сторону, но и отраженный, попадающий на тыльную сторону ячеек.


Обычная ячейка LG и ячейка NeON™ 2 BiFacial

Лицевая сторона этой солнечной панели при оптимальных условиях генерирует электрический ток мощностью 310 ватт. Тыльная сторона панели генерирует дополнительно до 30% мощности лицевой панели. Подтвержденная максимальная мощность модуля составляет 400 ватт! Номинальная мощность не менее 375 ватт.

Кроме того, в модуле NeON™ 2 BiFacial используется новейшая технология LG, получившая название Сello Technology™. Эта технология дала возможность перенаправить токопроводящие пути. Пути генерируемого электричества к выходу модуля были распределены на 12 тонких проводников, что позволило снизить потери электроэнергии по сравнению с традиционными схемами.


Новые технологии компании LG

Основные характеристики модуля.
Номинальная мощность 375 ватт.
Максимальная мощность 400 ватт.
Отклонение номинальной мощности 0/+3%
Эффективность 19.6%
Количество ячеек 60 (6х10) штук
Материал Монокристаллический кремний
Тип разъемов МС-4
Класс защиты IP67


Солнечная батарея NeON™ 2 BiFacial на выставке INTERSOLAR EUROPE 2016

С 31 мая по 2 июня 2017 года в Мюнхене будет проходить очередная выставка INTERSOLAR EUROPE. И нет сомнения в том, что на ней появятся очередные новинки и солнечные модули гораздо большей мощности. Наука ведь не стоит на месте.