Применение графов. Применение графов в различных областях жизни людей Теория графов в жизни

2.1. Применение графов в различных областях жизни людей

Как уже было сказано, графы имеют очень широкое применение: с их помощью выбирают наиболее выгодное расположение зданий, графами представлены схемы метро. Далее представлены некоторые примеры применения графов.


1. Можно составить граф любой позиционной игры : шахмат, шашек, «крестиков – ноликов».

Здесь позиции станут вершинами, а направленные отрезки между ними будут означать, что одним ходом можно перейти от одной позиции к другой, по направлению стрелки. (приложение 1, рис.1 )


2. Лабиринт.

Исследовать лабиринт - это найти путь в этом графе.

Вершинами здесь обозначены тупики, а отрезками – проходы лабиринта. (приложение 1, рис. 2 )


3. Генеалогическое древо.

Граф иерархической системы называется деревом. Отличительной особенностью дерева является то, что между любыми двумя его вершинами существует единственный путь. Дерево не содержит циклов и петель.

Обычно у дерева, представляющего иерархическую систему, выделяется одна главная вершина, которая называется корнем дерева . Каждая вершина дерева (кроме корня) имеет только одного предка – обозначенный ею объект входит в один класс верхнего уровня.


Любая вершина дерева может порождать несколько потомков – вершин, соответствующих классам нижнего уровня.

Для каждой пары вершин дерева существует единственный путь, их соединяющий. Этим свойством пользуются при нахождении всех предков, например, по мужской линии, любого человека, чья родословная представлена в виде генеалогического дерева, которое является «деревом» и в смысле теории графов. (приложение 1 рис.3 ).

4.

Графами являются блок – схемы программ для ЭВМ, а так же любые электрические цепи или электрическая сеть.

(приложение 1 рис.4 ).


5. Схема цепей дежурного освещения

Схема цепей дежурного освещения тепловоза ТЭМ2 тоже представлена в виде графа.

(приложение 1 рис.5 ).


6. Схемы авиалиний

Схемы авиалиний представлены в виде графов.

(приложение 1 рис.6 ).


7. Участок московского Метрополитена.

Один из участков московского Метрополитена .

Он нарисован тоже в виде графа.

(приложение 1 рис.7 ).


8. Социограммы

Социограммы (в психологии при исследовании межличностных отношений в группах).

Она тоже представлена с помощью графа.

(приложение 1 рис.8 ).


9. Схема железных дорог

Схема железных дорог .

Вершины – железнодорожные станции, а рёбра – железнодорожные пути.

(приложение 1 рис.9 ).

10. Созвездия

Графы есть и на картах звездного неба .

Это созвездия.

(приложение 1 рис.10 ).


11. Химия. Теория графов позволяет точно определить и пояснить некоторые основные понятия химии: структуру, конфигурацию, конформацию, квантовомеханическое и статистико-механическое взаимодействия молекул, определять число теоретически возможных изомеров органических соединений, позволяет анализировать некоторые химические превращения, описывать химические реакции, определять некоторые свойства молекул.



- связный неориентированный граф, находящийся во взаимно-однозначном соответствии со структурной формулой химического соединения таким образом, что вершинам графа соответствуют атомы молекулы, а рёбрам графа - химические связи между этими атомам. (приложение 1 рис.11 ).

12. Математика. Немало поводов для появления графов и в математике. Наиболее очевидный пример – любой многогранник в трёхмерном пространстве.

Например, вершины и рёбра куба можно рассматривать как вершины и рёбра графа. При этом мы отвлекаемся от того, как расположены элементы куба в пространстве, оставляя лишь информацию о том, какие вершины соединены рёбрами. На рисунке 12 показаны три способа изобразить один и тот же граф - трёхмерного куба.

Еще один способ образования графов из геометрических объектов иллюстрирует рисунком 12 . Слева показаны шесть кругов на плоскости, а справа - граф, в котором каждая вершина соответствует одному из этих кругов и две вершины соединены ребром.

Так же графы под другими названиями проникли в учебники химии, биологии, географии, где они использованы для наглядного и экономного описания различных схем организаций, логических возможностей, классификаций, в том и только том случае, когда соответствующие круги пересекаются.

13. Физика. Одной из наиболее сложных и утомительных задач для радиолюбителей считается конструирование печатных схем.


Печатная схема - это пластинка из какого-либо диэлектрика (изолирующего материала), на которой в виде металлических полосок вытравлены дорожки. Пересекаться дорожки могут только в определенных точках, куда устанавливаются необходимые элементы (диоды, триоды, резисторы и другие), их пересечение в других местах вызовет замыкание электрической цепи.

Итак, из всего вышесказанного неопровержимо следует практическая ценность теории графов, доказательство которой и являлось целью данного исследования.

Среди проблем связанных с решение логических задач, пристальное внимание исследователей в последние годы привлекает вопрос о применении к данному роду задач теории графов.

Теория графов в настоящее время является интенсивно развивающимся разделом дискретной математики. Это объясняется тем, что в виде графовых моделей описываются многие объекты и ситуации: коммуникационные сети, схемы электрических и электронных приборов, химические молекулы, отношения между людьми и многое другое.

Графовые задачи обладают рядом достоинств, позволяющих их использовать для развития воображения и улучшения логического мышления. Графовые задачи допускают изложение в занимательной, игровой форме.

Предметом исследования в данной работе является решение логических задач при помощи графов.

Цель исследования: применить графовый аппарат для решения логических задач.

Гипотеза: На наш взгляд решение многих логических задач будет менее трудоемким, мы будем использовать для этого теорию графов.

Задачи исследования:

    рассмотреть решение задач при помощи графов;

    научиться переводить задачи на язык графов;

    сравнить традиционные методы решения задач с методами теории графов.

В 1736 году великий математик Леонард Эйлер нашел решение головоломки, носящей название «Проблема кёнигсбергских мостов». Река Прегель, протекающая через Калининград (прежде город назывался Кенигсбергом) омывает два острова (рис. Рисунок 1Рисунок 1). Берега реки с островами были во времена Эйлера связаны мостами так, как это показано на рисунке. В головоломке требовалось найти маршрут, проходящий по всем четырем участкам суши по одному разу, а конец и начало пути должны совпадать.

Рисунок 1

Л. Эйлер доказал, что маршрута, который бы отвечал условиям головоломки, не существует, и разработал теорию решения такого рода головоломок. Владея материалом вводной части курса «Знакомство с графами», нетрудно воспроизвести идею рассуждения Л. Эйлера. Для этого нужно предварительно заменить Рисунок 1 схемой, приведенной на рисунке 2, где острова и берега изображаются точками.

Рисунок 2

Схема, приведенная на рисунке Рисунок 2 не является, строго говоря графом: на ней имеются кратные ребра. Тем не менее 1736 год, когда эта головоломка была решена, принято считать годом рождения теории графов.

Спустя сто с лишним лет, в 1874 году немецкий ученый Г. Кирхгоф разработал эффективную методику определения значения силы тока в электрической цепи, используя методы и понятия, получившие позднее права гражданства в теории графов. Еще 10 лет спустя английский математик А. Кели (мать его была русской, он владел русским языком и следил за русской математической литературой; он оказался среди тех немногих математиков, которые с самого начала поняли и поддержали идеи Н.И. Лобачевского) разработал теорию деревьев для подсчета числа изомеров насыщенных углеводородов с данным числом n атомов углерода.

Графом в математике называется конечная совокупность точек, называемых вершинами; которые из них соединены друг с другом линиями называемыми ребрами графа .

Графом называется множество точек, изображенных на плоскости (листе бумаги, доске), некоторые пары из которых соединены линиями. Точки называются вершинами графа, линии – ребрами. Степенью вершины называется число ребер, выходящих из вершины.

При взгляде на географическую карту сразу бросается в глаза сеть железных дорог. Это типичный граф: кружочки обозначают станции-вершины графа, а соединяющие их пути-ребра.

Рисунок 3

Граф на рис.Рисунок 3 изображает схему дорог между селами М, А, Б, В и Г. Здесь каждые две вершины соединены между собой ребром. Такой граф называется полным. Числа на рисунке указывают расстояния между селами по этим дорогам. Пусть в селе М находится почта и почтальон должен развести письма в остальные четыре села. Существует много различных маршрутов поездки. Как из них выбрать наикратчайший? Проще всего проанализировать все варианты. Сделать это поможет новый граф, на котором легко увидеть возможные маршруты. Вершина М вверху- начало маршрутов. Из нее можно начать путь четырьмя различными способами: в А, в Б, в В или в Г. После посещения одного из сел остается три возможности продолжения маршрута, потом две, потом дорога в последнее село и вновь в М. Всего 4321  24 способа.

Подобные задачи возникают часто при нахождении наилучших вариантов развозки товаров по магазинам, материалов по стройкам.

Рассмотрим одну из простейших задач: «Красный, синий, желтый и зеленый карандаши лежат в четырех коробках по одному. Цвет карандаша отличается от цвета коробки. Известно, что зеленый карандаш лежит в синей коробке, а красный не лежит в желтой. В какой коробке лежит каждый карандаш?»

Обозначим точками карандаши и коробки. Сплошная линия будет обозначать, что карандаш лежит в соответствующей коробке, а пунктирная, что не лежит. Тогда с учетом задачи имеем G 1 (рис.Рисунок 4).

Рисунок 4

Далее достраиваем граф по следующему правилу: поскольку в короб может лежать ровно один карандаш, то из каждой точки должны выходить одна сплошная линия и три пунктирные. Получается граф G 2 , дающий решение задачи.

При решении задач, которые в научно-популярной и методической литературе принято называть логическими, как правило, сколько-нибудь существенно не опираются на школьные знания и умения. В связи с этим они традиционно считаются мерилом смекалки, показателем уровня математических способностей, остроты мышления, умения пользоваться памятью и часто разбираются на занятиях школьных математических кружков.

Решение многих логических задач с помощью графов вполне доступно уже младшим школьникам. Для этого им достаточно иметь лишь интуитивные представления о графах и самых очевидных их свойствах.

Рассмотрим примеры использования графов при решении некоторых известных задач. При этом объекты будем изображать точками, а отношения между ними – отрезками (положения точек и длины отрезков произвольны).

Выяснение структур логических задач с точки зрения применяемых методов решения дает возможность вычленить некоторые классы таких задач.

Задача 1. Беседуют трое друзей: Белокуров, Чернов и Рыжов. Брюнет сказал Белокурову: «Любопытно, что один из нас белокурый, другой брюнет, третий рыжий, но ни у кого цвет волос не соответствует фамилии». Какой цвет волос имеет каждый из друзей?

Приведем подробное решение. Построим граф отношения, заданного в условии задачи. Для этого, прежде всего, выделим множество фамилий М и множество цветов волос К, элементы которых будем обозначать точками. Точки множества М назовем буквами Б, Ч, Р (Белокуров, Чернов и Рыжов); точки второго множества – б, бр, р (белокурый, брюнет, рыжий). Если точке из одного множества соответствует точка из другого, мы их соединим сплошной линией, а если не соответствует – штриховой. Условие задачи указывает лишь на несоответствия, поэтому вначале должен возникнуть граф, изображенный на рисунке Рисунок 5.

Рисунок 5

Из условия задачи следует, что для каждой точки из множества М существует одна и только одна тонка из множеств К, которая соответствует первой и, наобо­рот, каждой точке из множества К соответствует одна и только одна точка из множества М. Задача сводится к тому, чтобы найти это единственно возможное соответствие междуэлементами множеств М и К, т. е. к нахождению трех сплошных линий, соединяющих со­ответствующие точки множеств.

Принцип решения задачи прост. Если какая-то точка оказывается соединенной с двумя точками другого множества штриховыми линиями, то с его третьей точкой ее необходимо соединить сплошной линией. Поэтому граф на рисунке Рисунок 5 дополняется сплошными линиями, соединяющими точки Б и р, Р и бр (рис. Рисунок 6).

Рисунок 7

Таким образом, на графе этого рисунка автоматически прочитываем ответ: Белокуров - рыжий, Чернов - белокурый, Ры­жов – брюнет. Таким же приемом решаются, например, задачи 2 и 3.

Задача 2. Для Вани, Коли и Миши испечены пи­роги: один с капустой, другой с рисом, третий – с яблоками. Миша не любит пирог с яблоками и не ест с капустой. Ваня не любит пирог с капустой. Кто какой пирог ест?

Задача 3. На одном заводе работают три друга: слесарь, токарь и сварщик. Их фамилии Борисов, Ива­нов и Семенов. У слесаря нет ни братьев, ни сестер, он самый младший из друзей. Семенов, женатый на сестре Борисова, старше токаря. Назовите фамилии сле­саря, токаря и сварщика.

Приведенные задачи можно успешно решать и с ис­пользованием таблиц. Такой способ или его модифика­ции рекомендуется и разбирается во многих научно-по­пулярных книгах и педагогических пособиях. Можно, однако, указать классы задач, в которых применение графов, изображенных точками и отрезками, оказывает­ся более удобным и оправданным. Использование же в решениях метода таблиц типа турнирных таблиц или их обобщений вынуждает важную часть рассуждений проводить «устно». При этом неоднократно приходится возвращаться к условию задачи, к промежуточным ре­зультатам, многое помнить и в нужный момент поль­зоваться полученной информацией. К такому типу задач относятся задачи с тремя или большим числом множеств рассматриваемых объектов.

Задача 4. Три товарища – Иван, Дмитрий и Степан – преподают различные предметы (химию, биологию, физику) в школах Москвы, Ленинграда и Киева. Известно:

1. Иван работает не в Москве, а Дмитрий не в Ленинграде;

2. Москвич преподает не физику;

3. Тот, кто работает в Ленинграде, преподает химию;

4. Дмитрий преподает не биологию.

Какой предмет и в каком городе преподает каждый из товарищей?

Решение. Выделим три множества: множество имен, множество предметов и множество городов. Эле­мент каждого из множеств на рисунке 4 задан своей точкой (буквы на этом рисунке - первые буквы соот­ветствующих слов). Если две точки из разных множеств характеризуют признаки разных людей, то будем сое­динять такие точки штриховой линией. Если же две точки из разных множеств соответствуют признакам одного человека, то такие точки будем соединять попар­но сплошными линиями. Существенно, что по условию задачи для каждой точки любого множества в каждом из остальных множеств найдется одна и только одна точка, ей соответствующая.

Рисунок 8

Таким образом, граф на рисунке 8 содержит все заданные в условии элементы множеств и отношения между ними. Задача на языке графов сводится к нахождению трех «сплошных» тре­угольников с вершинами в разных множествах.

Рассмотрим граф на рисунке 8. Напрашивается штри­ховой отрезок ХД, Действительно, Л соответствует X и, одновременно, Л не соответствует Д, т. е. X не может соответствовать Д. Итак, используется типичная для такого рода задач операция на графе: если у тре­угольника с вершинами в трех разных множествах одна сторона сплошная, вторая - штриховая, то третья должна быть штриховой. Из условия задачи следует равномерность еще одной операции на графе: если какая-то точка соединена штриховыми отрезками с двумя точками во втором множестве, то ее следует со­единить с третьей точкой этого множества сплош­ным отрезком. Так проводится сплошной отрезок ДФ. Далее проводится штриховой отрезок ДМ (в тре­угольнике ДФМ сторона ДФ сплошная, а ФМ - штри­ховая), ДК сплошным (ДМ и ДЛ штриховые), Теперь соединим точки Ф и К сплошным отрезком. Если в треугольнике с вершинами в разных множествах две стороны сплошные, то третья тоже будет сплошной. Найден первый «сплошной» треугольник ДФК. Так, не возвращаясь к тексту задачи, руководствуясь лишь естественными операциями на графе, описанными выше, мы находим решение (рис. 9).

Рисунок 9

Отметим последователь­ность, в которой проводились отрезки: ХД, ДФ, ДМ, ДК, ФК, МС, ИЛ, ХИ, БМ, БС. Вершины каждого из трех полученных «сплошных» треугольников определяют ответ задачи: Иван преподает химию в Ленинграде, Дмитрий - физику в Киеве и Степан - биологию в Москве.

В следующей задаче применение графов помогает обнаружить наличие двух решений.

Задача 5. Маша, Лида, Женя и Катя умеют играть на разных инструментах (виолончели, рояле, гитаре и скрипке], но каждая только на одном. Они же владеют разными иностранными языками (английским, француз­ским, немецким и испанским), но каждая только одним. Известно:

1. девушка, которая играет на гитаре, говорит по-испански;

2. Лида не играет ни на скрипке, ни на виолончели и не знает английского языка;

3. Маша не играет ни на скрипке, ни на виолончели и не знает английского языка;

4. девушка, которая говорит по-немецки, не играет на виолончели;

5. Женя знает французский язык, но не играет на скрипке.

Кто на каком инструменте играет и какой иностранный язык знает?

Условию задачи соответствует граф, изображенный на рисунке 10.

Рисунок 10

Обозначения и принцип решения здесь такие же, как и в задаче 4. Проведем последовательно следующие сплошные отрезки: КС, ВЖ, ВФ, АК (рис.11).

Рисунок 11

Тем самым образуются два «сплошных» треугольника ЖВФ и КСА. Проводим еще сплошной отрезок РН. Теперь убеждаемся, что условия задачи не обеспечи­вают однозначности выбора третьей точки для каждой из пар РН и ГИ. Возможны следующие варианты «сплошных» треугольников: МГИ и ЛРН или ЛГИ и МРН. Таким образом, задача имеет два решения.

Приведем задачу, в которой граф позволяет довольно просто обнаружить избыточность условия.

Задача 6. В шахматном турнире принимали уча­стие 6 партнеров разных профессий: токарь, слесарь, инженер, учитель, врач и шофер. Известно:

1. в первом туре Андреев играл с врачом, учитель с Борисовым, а Григорьев с Евдокимовым;

2. во втором туре Дмитриев играл с токарем, а врач с Борисовым;

3. в третьем туре Евдокимов играл с инженером;

4. по окончании турнира места распределились так - Борисов I место, Григорьев и инженер поделили II и III места, Дмитриев занял IV Место, а Золотарев и слесарь поделили пятое и шестое места.

Какие профессии имели Григорьев, Дмитриев и Евдо­кимов?

7. Применение графов в жизни

Вот мы рассмотрели все варианты графов, их элементы и теперь мы рассмотрим где и в каких сферах жизни используются графы.

· В химии (для описания структур, путей сложных реакций, правило фаз также может быть интерпретировано как задача теории графов); компьютерная химия - сравнительно молодая область химии, основанная на применении теории графов. Теория графов представляет собой математическую основу хемоининформатики. Теория графов позволяет точно определить число теоретически возможных изомеров и углеродов и других органических соединений.

· В информатике и программировании (граф - схема алгоритма).

· В коммуникационных и транспортных системах. В частности, для маршрутизации данных в интернете.

· В экономике.

· В логистике.

· В физике или схемотехнике (топология межсоединений элементов на печатной плате или микросхеме представляет собой граф или гиперграф).

· В биологии.

· стереохимии

· В строительстве.

· В менеджменте.

· В географии.

· В социологии.

· В автоматизации технологических процессов и производств.

Графы в биологии.

Графы в биологии большую роль в биологический теории ветвящихся процессов. Для простоты мы рассмотрим только одну разновидность ветвящихся процессов - размножение бактерий. Предположим, что через определенный промежуток времени каждая бактерия либо делится на две новые, либо погибает. Тогда для потомства одной бактерии мы получим двоичное дерево. Нас будет интересовать лишь один вопрос: в скольких случаях n - е поколение одной бактерии насчитывает ровно k потомков? Рекуррентное соотношение, обозначающее число необходимых случаев, известно в биологии под название процесса Гальтона - Ватсона. Его можно рассматривать как частный случай многих общих формул.

Графы в теории массового обслуживания.

Понятие центральной вершины и центра графа появились в связи с задачами оптимального размещения пунктов массового обслуживания, таких как больницы, сберегательные банки, пожарные части, почтамты и т.п., когда важно минимизировать наибольшее расстояние от любой точки населенного пункта до ближайшего пункта.

Графы в математике.

В математике графы применяются для решения логических задач и головоломок. Основной применения графов для решения логических задач служит выявление и последовательное исключение возможностей, заданных в условии. Это выявление логических возможностей часто может быть истолковано с помощью построения и рассмотрения соответствующих графов. Возьмем, к примеру, такую задачу: «Беседуют трое: Белокуров, Чернов и Рыжов. Брюнет сказал Белокурову: «Любопытство, что один из нас русый, другой - брюнет, а третий - рыжий, но ни кого цвет волос не соответствует фамилии». Какой цвет волос имеет из беседующих?» Решение данной задачи можно изобразить с помощью графа.

Графы в физике.

Недавно в одной из наиболее сложных и утомительных задач для радиолюбителей было конструирование печатных схем. Печатной схемой называют пластинку из какого - либо диэлектрики (изолирующего материала), на которой в виде металлических полосок вытравлены дорожки. Пересекаться дорожки могут только в определенных точках, куда устанавливаются необходимые элементы (диоды, триоды, резисторы и другие), их пересечение в других местах вызовет замыкание электрической цепи. В ходе решения этой задачи необходимо вычертить плоский граф, с вершинами в указанных точках. Итак из всего вышеперечисленного неопровержимо следует практическая ценность теории графов.

Теория графов в психологии.

В психологии графы используются для представления промежуточных и окончательных результатов теоретических и экспериментальных исследований. При этом часто графы приобретают формы блок - схем.

Теория графов в логистике.

В анализе логических систем основной формы модели, подлежащий совершенствованию и насыщению данными с помощью экспертных оценок, является дерево целей. Экспертам по логистике предлагается оценить структуру логистической модели в целом и дать предложения о включении в нее не учетных связей. При этом используется анкетный метод. Результаты каждого опроса доводятся до сведения всех экспертов по логистике, что позволяет им далее корректировать свои суждения на основе вновь полученной информации. Дерево целей представляет собой связной граф, вершина которого интерпретируется как цели логистической системы, а ребра или дуги - как связи между ними. Это основной инструмент увязки целей верхнего уровня логистической организации с конкретными средствами их достижения на нижнем операционном уровне.

Графы

При выполнении анализа на компьютере граф неудобно задавать графически, а лучше представлять его в виде матриц, операции с которыми достаточно просто проводить на компьютере. Известно несколько типов матриц, позволяющих задавать граф...

Математические методы, применяемые в теории систем массового обслуживания

Первая работа по теории графов принадлежит Леонарду Эйлеру (1736 год), хотя термин «граф» впервые ввел в 1936 году венгерский математик Денеш Кениг. Графами были названы схемы, состоящие из точек и соединяющих эти точки отрезков прямых или кривых...

Метод Дейкстры нахождения кратчайшей цепи в связном графе

Пусть - граф. Конечная последовательность вершин и ребер графа, в которой каждое есть ребро, соединяющее вершины и, называется маршрутом на графе. Говорят, что маршрут (1.1) соединяет вершины и. Число называют длиной маршрута...

Орграфы, теория и применение

Матрица инцидентности A. По вертикали указываются вершины, по горизонтали - ребра. Aij=1 если вершина i инцидентна ребру j, в противном случае aij=0. Для орграфа aij=-1 если из вершины i исходит ребро j, aij=1 если в вершину i входит ребро j. Если ребро - петля...

Орграфы, теория и применение

Орграфы и матрицы. Матрицей сложностей A (D) орграфа D называется (рхр)-матрица аи> У которой ai}=, если vfl,-- дуга орграфа D, и atj~Q в противном случае. Сумма по столбцу легко проверить...

Особенности применения теории графов при решении задач и в практической деятельности

До сих пор мы задавали ориентированные и не ориентированные графы, изображая их с помощью рисунков. Можно задать граф как пару множеств, следуя определению, однако этот способ довольно громоздкий и представляет, скорее, теоретический интерес...

Построение фигур без отрыва карандаша от бумаги

Графы часто используются для решения логических проблем, связанных с перебором вариантов. Для примера рассмотрим такие задачи: Задача:Три брата - Ваня, Саша и Коля разного возраста. Ваня не старше Коли, а Саша не старше Вани...

Перед тем как начать изучение непосредственно алгоритмов, необходимо обладать базовыми знаниями касательно самих графов, понимать, как они представляются в компьютере. Здесь не будут подробно описаны все аспекты теории графов (этого и не требуется), но только те, незнание которых заметно усложнит усвоение данной области программирования.

Несколько примеров дадут немного поверхностного представления о графе. Так типичным графом является схема метро или какой-либо другой маршрут. В частности программисту знакома компьютерная сеть, также являющаяся графом. Общее здесь это наличие точек, соединенных линиями. Так в компьютерной сети точки – это отдельные серверы, а линии – различные виды электрических сигналов. В метрополитене первое – станции, второе – туннели, проложенные между ними. В теории графов точки именуется вершинами (узлами ), а линии – ребрами (дугами ). Таким образом, граф – это совокупность вершин, соединённых ребрами.

Математика оперирует не содержанием вещей, а их структурой, абстрагируя ее из всего того, что дано как целое. Пользуясь именно этим приемом, мы можем заключать о каких-либо объектах как о графах. А поскольку теория графов это часть математики, то для нее нет абсолютно никакого значения, что в принципе представляет собой объект; важно лишь то, является ли он графом, т. е. обладает ли обязательными для графов свойствами. Поэтому, прежде чем привести примеры, мы выделяем в рассматриваемом объекте лишь то, что как нам кажется, позволит показать аналогию, отыскиваем общее.

Вернемся к компьютерной сети. Она обладает определенной топологией, и может быть условно изображена в виде некоторого числа компьютеров и путей их соединяющих. На рисунке ниже в качестве примера показана полносвязная топология.

Это по сути граф. Пять компьютеров являются вершинами, а соединения (пути передачи сигналов) между ними – ребрами. Заменив компьютеры вершинами, мы получим математический объект – граф, который имеет 10 ребер и 5 вершин. Пронумеровать вершины можно произвольным образом, а не обязательно так, как это сделано на рисунке. Стоит отметить, что в данном примере не используется ни одной петли, то есть такого ребра, которое выходит из вершины и сразу же входит в нее, но петли могут встречаться в задачах.

Вот некоторые важные обозначения, используемые в теории графов:

  • G=(V, E), здесь G – граф, V – его вершины, а E – ребра;
  • |V| – порядок (число вершин);
  • |E| – размер графа (число рёбер).

В нашем случае (рис. 1) |V|=5, |E|=10;

Когда из любой вершины доступна любая другая вершина, то такой граф называется неориентированным связным графом (рис. 1). Если же граф связный, но это условие не выполняется, тогда такой граф называется ориентированным или орграфом (рис. 2).

В ориентированных и неориентированных графах имеется понятие степени вершины. Степень вершины – это количество ребер, соединяющих ее с другими вершинами. Сумма всех степеней графа равна удвоенному количеству всех его ребер. Для рисунка 2 сумма всех степеней равна 20.

В орграфе, в отличие от неориентированного графа, имеется возможность двигаться из вершины h в вершину s без промежуточных вершин, лишь тогда когда ребро выходит из h и входит в s, но не наоборот.

Ориентированные графы имеют следующую форму записи:

G=(V, A), где V – вершины, A – направленные ребра.

Третий тип графов – смешанные графы (рис. 3). Они имеют как направленные ребра, так и ненаправленные. Формально смешанный граф записывается так: G=(V, E, A), где каждая из букв в скобках обозначает тоже, что ей приписывалось ранее.

В графе на рисунке 3 одни дуги направленные [(e, a), (e, c), (a, b), (c, a), (d, b)], другие – ненаправленные [(e, d), (e, b), (d, c)…].

Два или более графов на первый взгляд могут показаться разными по своей структуре, что возникает вследствие различного их изображения. Но это не всегда так. Возьмем два графа (рис. 4).

Они эквивалентны друг другу, ведь не изменяя структуру одного графа можно построить другой. Такие графы называются изоморфными , т. е. обладающими тем свойством, что какая-либо вершина с определенным числом ребер в одном графе имеет тождественную вершину в другом. На рисунке 4 изображены два изоморфных графа.

Когда каждому ребру графа поставлено в соответствие некоторое значение, называемое весом ребра, тогда такой граф взвешенный . В разных задачах в качестве веса могут выступать различные виды измерений, например длины, цены маршруты и т. п. В графическом представлении графа весовые значения указываются, как правило, рядом с ребрами.

В любом из рассмотренных нами графов имеется возможность выделить путь и, причем не один. Путь – это последовательность вершин, каждая из которых соединена с последующей посредством ребра. Если первая и последняя вершины совпадают, то такой путь называется циклом. Длина пути определяется количеством составляющих его ребер. Например, на рисунке 4.а путем служит последовательность [(e), (a), (b), (c)]. Этот путь является подграфом, так как к нему применимо определение последнего, а именно: граф G’=(V’, E’) является подграфом графа G=(V, E), только тогда когда V’ и E’ принадлежат V, E.

Учебное издание

Ююкин Николай Алексеевич

ЛР № . Подписано в печать

Уч. Изд. л.. , .

Воронежский государственный технический университет

394026 Воронеж, Московский просп. 14

СПРАВОЧНИК МАГНИТНОГО ДИСКА

Кафедра высшей математики и физико-математического моделирования

Н.А. Ююкин

ДИСКРЕТНАЯ МАТЕМАТИКА Часть 1. Элементы теории графов

Учебное пособие

Н.А. Ююкин

ДИСКРЕТНАЯ МАТЕМАТИКА Часть 1. Элементы теории графов

Учебное пособие

Воронеж 2004

ВВЕДЕНИЕ

Данное пособие может быть использовано в курсе “Дискретная математика” студентами ВГТУ, обучающимися по специальностям:

090102 – Компьютерная безопасность;

090105 – Комплексное обеспечение информационной безопасности автоматизированных систем;

090106 - Информационная безопасность телекоммуникационных систем.

Дисциплина “Дискретная математика” обеспечивает приобретение знаний и умений в соответствии с государственным, общеобразовательным стандартом, и при этом содействует получению фундаментального образования, формированию мировоззрения и развитию логического мышления.

Теория графов является эффективным аппаратом формализации современных инженерных задач, связанных с дискретными объектами. Она используется при проектировании интегральных схем и схем управления, исследовании автоматов и логических цепей, в системном анализе, автоматизированном управлении производством, при разработке вычислительных и информационных сетей, в схемотехническом и кон- структорско-топологическом проектировании и т.д.

В учебном пособии излагаются основы, базовые методы и алгоритмы теории графов. Здесь представлены н-графы и орграфы; изоморфизмы; деревья; эйлеровы графы; планарные графы; покрытия и независимые множества; сильная связность

в орграфах; анализ графа цепи Маркова; алгоритмы поиска кратчайших путей в графах; задача поиска гамильтонова цикла

в графе; задача о коммивояжере; перечисление графов и отображений; экстремальные задачи; оптимизационные задачи; универсальные задачи; метод ветвей и границ; а также вырабатываются практические навыки по использованию вышеприведенных понятий.

Целью курса является формирование у студентов теоретических знаний, практических умений и навыков в области моделирования процессов и явлений в естествознании и техни-

ке, с возможностью употребления математических символов для выражения количественных и качественных отношений объектов, необходимых для выполнения служебной деятельности в области защиты информации на высоком профессиональном уровне.

Достижению данной цели служат следующие задачи:

изучить максимально широкий круг понятий теории графов;

получить навыки решения учебных и практических задач;

овладеть методами оптимизации;

выработать навыки постановки и решения информационных задач, моделирования и анализа информации с помощью графов.

Дисциплина “Дискретная математика” относится к числу прикладных математических дисциплин. Она основывается на знаниях, приобретенных студентами при изучении дисциплин “Алгебра” и “Математическая логика и теория алгоритмов”. Знания и навыки, полученные при изучении дисциплины “Дискретная математика” используются при изучении общепрофессиональных и специальных дисциплин.

1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ГРАФОВ.

1.1. Задачи теории графов.

Теория графов - это раздел математики, изучающий системы связей между различными объектами, точно так же как это делается с помощью понятия отношения. Однако независимое определение графа упрощает изложение теории и делает её более понятной и наглядной.

Первые задачи теории графов были связаны с решением развлекательных задач и головоломок.

Первая задача . Задача о Кенигсбергских мостах была поставлена и решена Эйлером в 1786 году. Город располагался на берегах и двух островах реки Преголи. Острова между собой и берегами были связаны семью мостами, как показано на рисунке.

Возникал вопрос: можно ли выйдя из дома, вернуться обратно, проходя по каждому мосту ровно один раз?

Вторая задача . Задача о трех домах и трех колодцах. Имеется три дома и три колодца.

Требуется провести от каждого дома к каждому колодцу тропинку так, чтобы тропинки не пересекались. Задача была

решена Понтрягиным и независимо от него Куратовским в

Третья задача . О четырех красках. Любую карту на плоскости раскрасить четырьмя красками так, чтобы никакие две соседние области не были закрашены одним цветом.

Многие результаты теории графов используются для решения практических задач науки и техники. Так, в середине 19 века Кирхгоф применил теорию графов для расчета сложных электрических цепей. Однако, как математическая дисциплина, теория графов сформировалась только в 30-ых годах 20го века. При этом графы рассматриваются как некоторые абстрактные математические объекты. Они применяются при анализе и синтезе цепей и систем, в сетевом планировании и управлении, исследовании операций, программировании, моделировании жизнедеятельности организма и других областях.

1.2. Основные определения.

Графом G= (V,E ) называется совокупность двух множеств - непустого множества вершин V и множества неупорядоченных и упорядоченных пар вершин E . В дальнейшем будут рассматриваться конечные графы , т.е. графы с конечным множеством вершин и конечным семейством пар. Неупорядоченная пара вершин называется ребром , а упорядоченная - дугой .

Обычно граф изображается диаграммой : вершины - точками (или кружками), ребра – линиями произвольной конфигурации. На дуге дополнительно стрелкой указывается её направление. Отметим, что при изображении графа несуще-

ственны геометрические свойства ребер (длина, кривизна), а также взаимное расположение вершин на плоскости.

Вершины, которые не принадлежат ни одному ребру (дуге) называются изолированными. Вершины, соединенные ребром или дугой называются смежными . Ребро (дуга) и любая из его двух вершин называются инцидентными .

Говорят, что ребро (u,v ) соединяет вершины u и v , а дуга (u,v) начинается в вершине u и заканчивается в вершине v , при этом u называется началом , а v – концом этой дуги.

Пара вершин может соединяться двумя или более ребрами (дугами одного направления). Такие ребра (дуги) называются кратными . Дуга (или ребро) может начинаться или кончаться в одной и той же вершине. Такая дуга (ребро) называется петлёй . Граф, содержащий петли, называется псевдо графом . Граф, имеющий кратные ребра (дуги), называется мультиграфом .

Граф, без петель и кратных ребер, называется простым . Простой граф называется полным , если для любой пары его вершин существует ребро (дуга) их соединяющая. Полный граф, имеющий n вершин обозначается через K n . Например, это графы

Граф, состоящий из одной изолированной вершины (K 1 ), называется тривиальным .

Дополнением графа G называется граф G , имеющий те же вершины, что и граф G и содержащий те ребра, которые нужно добавить к графу G чтобы получить полный граф.

Каждому неорграфу канонически соответствует ориентированный граф с тем же множеством вершин, в котором каждое ребро заменено двумя дугами, инцидентными тем же вершинам и имеющих противоположные направления.

1.3. Степени вершин графа.

Степенью (валентностью) (обозначение d (v ) или deg (v )) вершины v простого графа G называется число ребер или дуг инцидентных данной вершине v . При подсчете валентности вершин псевдографа следует учитывать каждую петлю дважды.

Если степени всех вершин н-графа равны k , то граф называется регулярным (однородным) степени k . Если степень вершины равна 0 , то она является изолированной . Если степень вершины равна 1 , то вершина называется концевой (висячей, тупиковой).

Для орграфа число дуг исходящих из вершины v назы-

вается полустепенью исхода

(v ), а входящих – полустепе-

нью захода d

(v ), При этом справедливо соотношение d (v )=

(v )+

(v ).

Теорема Эйлера : Сумма степеней вершин графа равна

удвоенному количеству ребер, т.е.

d (vi )

(v )

Где n – число вершин; m – число

ребер (дуг). Данное утверждение доказывается тем, что при подсчете суммы степеней вершин каждое ребро учитывается два раза - для одного конца ребра и для другого.

1.4. Изоморфизм графов.

Граф называется помеченным (или перенумерованным), если его вершины отличаются друг от друга какими либо по-

метками (номерами). Граф считается полностью заданным в строгом смысле , если нумерация его вершин и ребер фиксирована. При этом графы G 1 и G 2 называются равными (обозначение G 1 = G 2 ) , , если их множества вершин и ребер совпадают. Два графа или псевдографа G 1 = (V 1 ,E 1 ) и G 2 = (V 2 ,E 2 ) называют-

изоморфными (обозначение G

если существуют

взаимно однозначных отображения: 1)

: V 1 V 2

: E 1 E 2 такие, что для любых двух вершин u , v в графе

справедливо соотношение ((u , v )) ((u ), (v )) .

Два простых графа (без петель и кратных ребер) G 1

и G 2

оказываются изоморфными, если существуют взаимно одно-

значное отображение

: V 1 V 2

Такое что

(u , v ) ((u ), (v )) .

Таким образом, изоморфными являются графы, которые отличаются только нумерацией вершин и ребер. Изоморфизм графов представляет собой отношение эквивалентности, поскольку оно обладает свойствами:

Рефлексивности -

G 1 ,

причем биекция

ставляет собой тождественную функцию.

Симметричности.

с биекцией

с биекцией

Транзитивности.

G 1 G 2

биекцией

1 ,а

с биекцией

то G G

с биекцией

2 (1 ) .